Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain ; 145(12): 4287-4307, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-35776111

RESUMO

Organized meningeal immune cell infiltrates are suggested to play an important role in cortical grey matter pathology in the multiple sclerosis brain, but the mechanisms involved are as yet unresolved. Lymphotoxin-alpha plays a key role in lymphoid organ development and cellular cytotoxicity in the immune system and its expression is increased in the CSF of naïve and progressive multiple sclerosis patients and post-mortem meningeal tissue. Here we show that persistently increased levels of lymphotoxin-alpha in the cerebral meninges can give rise to lymphoid-like structures and underlying multiple sclerosis-like cortical pathology. Stereotaxic injections of recombinant lymphotoxin-alpha into the rat meninges led to acute meningeal inflammation and subpial demyelination that resolved after 28 days, with demyelination being dependent on prior subclinical immunization with myelin oligodendrocyte glycoprotein. Injection of a lymphotoxin-alpha lentiviral vector into the cortical meningeal space, to produce chronic localized overexpression of the cytokine, induced extensive lymphoid-like immune cell aggregates, maintained over 3 months, including T-cell rich zones containing podoplanin + fibroblastic reticular stromal cells and B-cell rich zones with a network of follicular dendritic cells, together with expression of lymphoid chemokines and their receptors. Extensive microglial and astroglial activation, subpial demyelination and marked neuronal loss occurred in the underlying cortical parenchyma. Whereas subpial demyelination was partially dependent on previous myelin oligodendrocyte glycoprotein immunization, the neuronal loss was present irrespective of immunization. Conditioned medium from LTα treated microglia was able to induce a reactive phenotype in astrocytes. Our results show that chronic lymphotoxin-alpha overexpression alone is sufficient to induce formation of meningeal lymphoid-like structures and subsequent neurodegeneration, similar to that seen in the progressive multiple sclerosis brain.


Assuntos
Esclerose Múltipla Crônica Progressiva , Esclerose Múltipla , Ratos , Animais , Linfotoxina-alfa/metabolismo , Glicoproteína Mielina-Oligodendrócito , Inflamação/patologia , Córtex Cerebral/patologia , Meninges , Esclerose Múltipla/patologia , Esclerose Múltipla Crônica Progressiva/patologia , Tecido Linfoide/metabolismo , Tecido Linfoide/patologia , Fatores Imunológicos/metabolismo
2.
Acta Neuropathol Commun ; 8(1): 66, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32398070

RESUMO

Analysis of isolated meninges and cerebrospinal fluid (CSF) of post-mortem MS cases has shown increased gene and protein expression for the pro-inflammatory cytokines: tumour necrosis factor (TNF) and interferon-γ (IFNγ). Here we tested the hypothesis that persistent production of these cytokines in the meningeal compartment and diffusion into underlying GM can drive chronic MS-like GM pathology. Lentiviral transfer vectors were injected into the sagittal sulcus of DA rats to deliver continuous expression of TNF + IFNγ transgenes in the meninges and the resulting neuropathology analysed after 1 and 2 months. Injection of TNF + IFNγ viral vectors, with or without prior MOG immunisation, induced extensive immune cell infiltration (CD4+ and CD8+ T-cells, CD79a + B-cells and macrophages) in the meninges by 28 dpi, which remained at 2 months. Control GFP viral vector did not induce infiltration. Subpial demyelination was seen underlying these infiltrates, which was partly dependant on prior myelin oligodendrocyte glycoprotein (MOG) immunisation. A significant decrease in neuronal numbers was seen at 28 and 56 days in cortical layers II-V that was independent of MOG immunisation. RNA analysis at 28 dpi showed an increase in expression of necroptotic pathway genes, including RIP3, MLKL, cIAP2 and Nox2. PhosphoRIP3+ and phosphoMLKL+ neurons were present in TNF + IFNγ vector injected animals, indicating activation of necroptosis. Our results suggest that persistent expression of TNF in the presence of IFNγ is a potent inducer of meningeal inflammation and can activate TNF signalling pathways in cortical cells leading to neuronal death and subpial demyelination and thus may contribute to clinical progression in MS.


Assuntos
Doenças Desmielinizantes/metabolismo , Encefalomielite Autoimune Experimental/patologia , Interferon gama/metabolismo , Degeneração Neural/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Córtex Cerebral/imunologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Citocinas , Doenças Desmielinizantes/imunologia , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/patologia , Interferon gama/imunologia , Meninges/imunologia , Meninges/metabolismo , Meninges/patologia , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Degeneração Neural/imunologia , Ratos , Fator de Necrose Tumoral alfa/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...