Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurosci Lett ; 792: 136938, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36341925

RESUMO

BACKGROUND: Research on the peptide phoenixin has increased in recent years and greatly widened the known scope of its functions since its discovery in 2013. Involvement of phoenixin has since been shown in anxiety, food intake, reproduction as well as emotional and immunological stress. To further evaluate its involvement in stress reactions, this study aims to investigate the effects of abdominal surgery, a well-established physical stressor, on the activity of phoenixin-immunoreactive brain nuclei. METHODS: Male Sprague-Dawley rats (n = 6/group) were subjected to either an abdominal surgery stress protocol or a sham operation. Animals in the verum group were anesthetized, the abdominal cavity opened and the cecum palpated, followed by closing of the abdomen and recovery. Sham operated animals only received inhalation anesthesia and time for recovery. All animals were subsequently sacrificed and brains processed and evaluated for c-Fos activity as well as phoenixin density. RESULTS: Compared to control, abdominal surgery significantly increased c-Fos activity in the paraventricular nucleus (PVN, 6.4-fold, p < 0.001), the medial part of the nucleus of the solitary tract (mNTS, 3.8-fold, p < 0.001), raphe pallidus (RPa, 3.6-fold, p < 0.001), supraoptic nucleus (SON, 3.2-fold, p < 0.001), ventrolateral medulla (VLM, also called A1C1, 3.0-fold, p < 0.001), dorsal motor nucleus of vagus (DMN, 2.9-fold, p < 0.001), locus coeruleus (LC, 1.8-fold, p < 0.01) and Edinger-Westphal nucleus (EW, 1.6-fold, p < 0.05), while not significantly altering c-Fos activity in the amygdala (CeM, 1.3-fold, p > 0.05). Phoenixin immunoreactivity was not significantly affected by abdominal surgery (p > 0.05). CONCLUSION: The observed abdominal surgery-related increase in activity in phoenixin immunoreactive nuclei compared to sham surgery controls supports the hypothesis of an involvement of phoenixin in stress reactions. Interestingly, various psychological and physical stressors lead to specific changes in activity and immunoreactivity in phoenixin-containing nuclei, giving rise to a stressor-specific involvement of phoenixin.


Assuntos
Núcleo Hipotalâmico Paraventricular , Núcleo Supraóptico , Animais , Ratos , Masculino , Ratos Sprague-Dawley , Núcleo Supraóptico/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Encéfalo/metabolismo
3.
Brain Sci ; 12(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35203899

RESUMO

Due to phoenixin's role in restraint stress and glucocorticoid stress, as well as its recently shown effects on the inflammasome, we aimed to investigate the effects of lipopolysaccharide (LPS)-induced inflammatory stress on the activity of brain nuclei-expressing phoenixin. Male Sprague Dawley rats (n = 6/group) were intraperitoneally injected with either LPS or control (saline). Brains were processed for c-Fos and phoenixin immunohistochemistry and the resulting slides were evaluated using ImageJ software. c-Fos was counted and phoenixin was evaluated using densitometry. LPS stress significantly increased c-Fos expression in the central amygdaloid nucleus (CeM, 7.2-fold), supraoptic nucleus (SON, 34.8 ± 17.3 vs. 0.0 ± 0.0), arcuate nucleus (Arc, 4.9-fold), raphe pallidus (RPa, 5.1-fold), bed nucleus of the stria terminalis (BSt, 5.9-fold), dorsal motor nucleus of the vagus nerve (DMN, 89-fold), and medial part of the nucleus of the solitary tract (mNTS, 121-fold) compared to the control-injected group (p < 0.05). Phoenixin expression also significantly increased in the CeM (1.2-fold), SON (1.5-fold), RPa (1.3-fold), DMN (1.3-fold), and mNTS (1.9-fold, p < 0.05), leading to a positive correlation between c-Fos and phoenixin in the RPa, BSt, and mNTS (p < 0.05). In conclusion, LPS stress induces a significant increase in activity in phoenixin immunoreactive brain nuclei that is distinctively different from restraint stress.

4.
J Vis Exp ; (159)2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32449711

RESUMO

The prevalence and incidence of depressive disorders are rising worldwide, affecting about 322 million individuals, underlining the need for behavioral studies in animal models. In this protocol, to study depression-like and anhedonic behavior in rats, the established sucrose preference and novelty-induced hypophagia tests are combined with an automated food and liquid intake monitoring system. Prior to testing, in the sucrose preference paradigm, male rats are trained for at least 2 days to consume a sucrose solution in addition to tap water. During the test, rats are again exposed to water and sucrose solution. Consumption is registered every second by the automated system. The ratio of sucrose to total water intake (sucrose preference ratio) is a surrogate parameter for anhedonia. In the novelty-induced hypophagia test, male rats undergo a training period in which they are exposed to a palatable snack. During training, rodents show a stable baseline snack intake. On test day, the animals are transferred from home cages into a fresh, empty cage representing a novel unknown environment with access to the known palatable snack. The automated system records the total intake and its underlying microstructure (e.g., latency to approaching the snack), providing insight into anhedonic and anxious behaviors. The combination of these paradigms with an automated measuring system provides more detailed information, along with higher accuracy by reducing measuring errors. However, the tests use surrogate parameters and only depict depression and anhedonia in an indirect manner.


Assuntos
Ingestão de Alimentos/fisiologia , Preferências Alimentares/fisiologia , Sacarose/química , Animais , Modelos Animais de Doenças , Masculino , Ratos , Ratos Sprague-Dawley
5.
Nutrients ; 10(12)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513901

RESUMO

Nesfatin-1 is a well-established anorexigenic peptide. Recent studies indicated an association between nesfatin-1 and anxiety/depression-like behavior. However, it is unclear whether this effect is retained in obesity. The aim was to investigate the effect of nesfatin-130-59-the active core of nesfatin-1-on anxiety and depression-like behavior in normal weight (NW) and diet-induced (DIO) obese rats. Male rats were intracerebroventricularly (ICV) cannulated and received nesfatin-130-59 (0.1, 0.3, or 0.9 nmol/rat) or vehicle 30 min before testing. Nesfatin-130-59 at a dose of 0.3 nmol reduced sucrose consumption in the sucrose preference test in NW rats compared to vehicle (⁻33%, p < 0.05), indicating depression-like/anhedonic behavior. This dose was used for all following experiments. Nesfatin-130-59 also reduced cookie intake during the novelty-induced hypophagia test (-62%, p < 0.05). Moreover, nesfatin-130-59 reduced the number of entries into the center zone in the open field test (-45%, p < 0.01) and the visits of open arms in the elevated zero maze test (-39%, p < 0.01) in NW rats indicating anxiety. Interestingly, DIO rats showed no behavioral alterations after the injection of nesfatin-130-59 (p > 0.05). These results indicate an implication of nesfatin-130-59 in the mediation of anxiety and depression-like behavior/anhedonia under normal weight conditions, while in DIO rats, a desensitization might occur.


Assuntos
Anedonia/efeitos dos fármacos , Ansiedade/induzido quimicamente , Proteínas de Ligação ao Cálcio/efeitos adversos , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação a DNA/efeitos adversos , Proteínas de Ligação a DNA/química , Depressão/induzido quimicamente , Proteínas do Tecido Nervoso/efeitos adversos , Proteínas do Tecido Nervoso/química , Fragmentos de Peptídeos/efeitos adversos , Fragmentos de Peptídeos/química , Animais , Proteínas de Ligação ao Cálcio/administração & dosagem , Proteínas de Ligação a DNA/administração & dosagem , Relação Dose-Resposta a Droga , Comportamento Alimentar , Injeções Intraventriculares , Masculino , Proteínas do Tecido Nervoso/administração & dosagem , Nucleobindinas , Obesidade , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...