Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
J Biomed Sci ; 31(1): 56, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38807208

RESUMO

BACKGROUND: Infections with Herpes simplex virus (HSV)-1 or -2 usually present as mild chronic recurrent disease, however in rare cases can result in life-threatening conditions with a large spectrum of pathology. Monoclonal antibody therapy has great potential especially to treat infections with virus resistant to standard therapies. HDIT101, a humanized IgG targeting HSV-1/2 gB was previously investigated in phase 2 clinical trials. The aim of this study was to develop a next-generation therapy by combining different antiviral monoclonal antibodies. METHODS: A lymph-node derived phage display library (LYNDAL) was screened against recombinant gB from Herpes simplex virus (HSV) -1 and HDIT102 scFv was selected for its binding characteristics using bio-layer interferometry. HDIT102 was further developed as fully human IgG and tested alone or in combination with HDIT101, a clinically tested humanized anti-HSV IgG, in vitro and in vivo. T-cell stimulating activities by antigen-presenting cells treated with IgG-HSV immune complexes were analyzed using primary human cells. To determine the epitopes, the cryo-EM structures of HDIT101 or HDIT102 Fab bound to HSV-1F as well as HSV-2G gB protein were solved at resolutions < 3.5 Å. RESULTS: HDIT102 Fab showed strong binding to HSV-1F gB with Kd of 8.95 × 10-11 M and to HSV-2G gB with Kd of 3.29 × 10-11 M. Neutralization of cell-free virus and inhibition of cell-to-cell spread were comparable between HDIT101 and HDIT102. Both antibodies induced internalization of gB from the cell surface into acidic endosomes by binding distinct epitopes in domain I of gB and compete for binding. CryoEM analyses revealed the ability to form heterogenic immune complexes consisting of two HDIT102 and one HDIT101 Fab bound to one gB trimeric molecule. Both antibodies mediated antibody-dependent phagocytosis by antigen presenting cells which stimulated autologous T-cell activation. In vivo, the combination of HDIT101 and HDIT102 demonstrated synergistic effects on survival and clinical outcome in immunocompetent BALB/cOlaHsd mice. CONCLUSION: This biochemical and immunological study showcases the potential of an effective combination therapy with two monoclonal anti-gB IgGs for the treatment of HSV-1/2 induced disease conditions.


Assuntos
Herpes Simples , Humanos , Animais , Camundongos , Herpes Simples/imunologia , Herpes Simples/terapia , Herpes Simples/tratamento farmacológico , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Anticorpos Antivirais/imunologia , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Feminino , Herpesvirus Humano 2/imunologia , Herpesvirus Humano 2/efeitos dos fármacos
2.
J Phys Chem B ; 128(17): 4266-4281, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38640461

RESUMO

Ultrasmall gold nanoparticles were functionalized with peptides of two to seven amino acids that contained one cysteine molecule as anchor via a thiol-gold bond and a number of alanine residues as nonbinding amino acid. The cysteine was located either in the center of the molecule or at the end (C-terminus). For comparison, gold nanoparticles were also functionalized with cysteine alone. The particles were characterized by UV spectroscopy, differential centrifugal sedimentation (DCS), high-resolution transmission electron microscopy (HRTEM), and small-angle X-ray scattering (SAXS). This confirmed the uniform metal core (2 nm diameter). The hydrodynamic diameter was probed by 1H-DOSY NMR spectroscopy and showed an increase in thickness of the hydrated peptide layer with increasing peptide size (up to 1.4 nm for heptapeptides; 0.20 nm per amino acid in the peptide). 1H NMR spectroscopy of water-dispersed nanoparticles showed the integrity of the peptides and the effect of the metal core on the peptide. Notably, the NMR signals were very broad near the metal surface and became increasingly narrow in a distance. In particular, the methyl groups of alanine can be used as probe for the resolution of the NMR spectra. The number of peptide ligands on each nanoparticle was determined using quantitative 1H NMR spectroscopy. It decreased with increasing peptide length from about 100 for a dipeptide to about 12 for a heptapeptide, resulting in an increase of the molecular footprint from about 0.1 to 1.1 nm2.


Assuntos
Ouro , Nanopartículas Metálicas , Peptídeos , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Propriedades de Superfície , Tamanho da Partícula
3.
Inorg Chem ; 62(42): 17470-17485, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37820300

RESUMO

Alloyed ultrasmall silver-platinum nanoparticles (molar ratio Ag:Pt = 50:50) were prepared and compared to pure silver, platinum, and gold nanoparticles, all with a metallic core diameter of 2 nm. They were surface-stabilized by a layer of glutathione (GSH). A comprehensive characterization by high-resolution transmission electron microscopy (HRTEM), electron diffraction (ED), X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), differential centrifugal sedimentation (DCS), and UV spectroscopy showed their size both in the dry and in the water-dispersed state (hydrodynamic diameter). Solution NMR spectroscopy (1H, 13C, COSY, HSQC, HMBC, and DOSY) showed the nature of the glutathione shell including the number of GSH ligands on each nanoparticle (about 200 with a molecular footprint of 0.063 nm2 each). It furthermore showed that there are at least two different positions for the GSH ligand on the gold nanoparticle surface. Platinum strongly reduced the resolution of the NMR spectra compared to silver and gold, also in the alloyed nanoparticles. X-ray photoelectron spectroscopy (XPS) showed that silver, platinum, and silver-platinum particles were at least partially oxidized to Ag(+I) and Pt(+II), whereas the gold nanoparticles showed no sign of oxidation. Platinum and gold nanoparticles were well crystalline but twinned (fcc lattice) despite the small particle size. Silver was crystalline in electron diffraction but not in X-ray diffraction. Alloyed silver-platinum nanoparticles were almost fully amorphous by both methods, indicating a considerable internal disorder.

4.
J Intern Med ; 292(6): 925-940, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35934913

RESUMO

BACKGROUND: Treatment of newly diagnosed acute myeloid leukaemia (AML) is based on combination chemotherapy with cytarabine (ara-C) and anthracyclines. Five-year overall survival is below 30%, which has partly been attributed to cytarabine resistance. Preclinical data suggest that the addition of hydroxyurea potentiates cytarabine efficacy by increasing ara-C triphosphate (ara-CTP) levels through targeted inhibition of SAMHD1. OBJECTIVES: In this phase 1 trial, we evaluated the feasibility, safety and efficacy of the addition of hydroxyurea to standard chemotherapy with cytarabine/daunorubicin in newly diagnosed AML patients. METHODS: Nine patients were enrolled and received at least two courses of ara-C (1 g/m2 /2 h b.i.d. d1-5, i.e., a total of 10 g/m2 per course), hydroxyurea (1-2 g d1-5) and daunorubicin (60 mg/m2 d1-3). The primary endpoint was safety; secondary endpoints were complete remission rate and measurable residual disease (MRD). Additionally, pharmacokinetic studies of ara-CTP and ex vivo drug sensitivity assays were performed. RESULTS: The most common grade 3-4 toxicity was febrile neutropenia (100%). No unexpected toxicities were observed. Pharmacokinetic analyses showed a significant increase in median ara-CTP levels (1.5-fold; p = 0.04) in patients receiving doses of 1 g hydroxyurea. Ex vivo, diagnostic leukaemic bone marrow blasts from study patients were significantly sensitised to ara-C by a median factor of 2.1 (p = 0.0047). All nine patients (100%) achieved complete remission, and all eight (100%) with validated MRD measurements (flow cytometry or real-time quantitative polymerase chain reaction [RT-qPCR]) had an MRD level <0.1% after two cycles of chemotherapy. Treatment was well-tolerated, and median time to neutrophil recovery >1.0 × 109 /L and to platelet recovery >50 × 109 /L after the start of cycle 1 was 19 days and 22 days, respectively. Six of nine patients underwent allogeneic haematopoietic stem-cell transplantation (allo-HSCT). With a median follow-up of 18.0 (range 14.9-20.5) months, one patient with adverse risk not fit for HSCT experienced a relapse after 11.9 months but is now in second complete remission. CONCLUSION: Targeted inhibition of SAMHD1 by the addition of hydroxyurea to conventional AML therapy is safe and appears efficacious within the limitations of the small phase 1 patient cohort. These results need to be corroborated in a larger study.


Assuntos
Citarabina , Leucemia Mieloide Aguda , Humanos , Citarabina/uso terapêutico , Citarabina/farmacologia , Hidroxiureia/uso terapêutico , Arabinofuranosilcitosina Trifosfato/uso terapêutico , Proteína 1 com Domínio SAM e Domínio HD , Temperatura Alta , Protocolos de Quimioterapia Combinada Antineoplásica , Recidiva Local de Neoplasia , Leucemia Mieloide Aguda/tratamento farmacológico , Daunorrubicina/uso terapêutico
5.
Clin Transl Sci ; 15(10): 2366-2377, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35869929

RESUMO

HDIT101 is a first-in-class humanized monoclonal antibody recognizing a conserved epitope in glycoprotein B, a target present on the surface of herpes simplex virus 1 (HSV-1) and HSV-2 particles as well as on virus-infected cells. This was a first-in-human, single-center, double-blind, placebo-controlled trial in 24 healthy volunteers, randomized 3:1 (placebo:active) in each of the six dose levels with escalating doses up to 12,150 mg HDIT101. HDIT101 was administered intravenously, to study safety, pharmacokinetics (PKs), and immunogenicity. HDIT101 was well-tolerated in all recipients and no serious or severe adverse events, no infusion-related reactions, and no events suggestive of dose limiting off-target toxicity occurred. The mean serum exposure (area under the curve from zero to infinity [AUC0-∞ ]) of HDIT101 showed a linear increase from 4340 h*µg/ml at a dose of 50 mg to 1,122,247 h*µg/ml at a dose of 12,150 mg. No immunogenic effects following HDIT101 exposure were observed at any of the applied doses. HDIT101 demonstrated the expected PK properties of a monoclonal antibody was well-tolerated, and could be safely administered even at excessively high doses that may be required for treatment of patients with septical HSV spread.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Humanos , Voluntários Saudáveis , Método Duplo-Cego , Anticorpos Monoclonais/efeitos adversos , Epitopos
6.
Chemistry ; 28(51): e202201081, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35694861

RESUMO

We present an in-depth investigation of cyclodextrin complexes with guest compounds featuring complexation-induced room temperature phosphorescence (RTP) in aqueous solution. Very interestingly, only the complexed regioisomers bearing lateral substituents on meta-position show RTP, whereas the stronger host-guest systems with para-substituted dyes show no RTP features. The reported systems were investigated regarding their complexation behavior in water using isothermal titration calorimetry and mass spectrometry. In the case of γ-CD very strong 1 : 1 inclusion complexes (Ka up to 5.13×105  M-1 ) were unexpectedly observed. It was found that not only a strong binding to the cyclodextrin cavity is needed to restrict motion, inducing the emission, but also the conformation inside the cavity plays a pivotal role - as supported by an extensive NMR study and MD simulations.


Assuntos
Ciclodextrinas , Calorimetria/métodos , Ciclodextrinas/química , Espectroscopia de Ressonância Magnética , Conformação Molecular , Água/química
7.
J Phys Chem B ; 125(21): 5645-5659, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34029093

RESUMO

Ultrasmall silver nanoparticles were prepared by reduction with NaBH4 and surface-terminated with glutathione (GSH). The particles had a solid core diameter of 2 nm as shown by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). NMR-DOSY gave a hydrodynamic diameter of 2 to 2.8 nm. X-ray photoelectron spectroscopy (XPS) showed that silver is bound to the thiol group of the central cysteine in glutathione under partial oxidation to silver(+I). In turn, the thiol group is deprotonated to thiolate. X-ray powder diffraction (XRD) together with Rietveld refinement confirmed a twinned (polycrystalline) fcc structure of ultrasmall silver nanoparticles with a lattice compression of about 0.9% compared to bulk silver metal. By NMR spectroscopy, the interaction between the glutathione ligand and the silver surface was analyzed, also with 13C-labeled glutathione. The adsorbed glutathione is fully intact and binds to the silver surface via cysteine. In situ 1H NMR spectroscopy up to 85 °C in dispersion showed that the glutathione ligand did not detach from the surface of the silver nanoparticle, i.e. the silver-sulfur bond is remarkably strong. The ultrasmall nanoparticles had a higher cytotoxicity than bigger particles in in vitro cell culture with HeLa cells with a cytotoxic concentration of about 1 µg mL-1 after 24 h incubation. The overall stoichiometry of the nanoparticles was about Ag∼250GSH∼155.


Assuntos
Nanopartículas Metálicas , Prata , Células HeLa , Humanos , Ligantes , Nanopartículas Metálicas/toxicidade , Tamanho da Partícula , Espalhamento a Baixo Ângulo , Difração de Raios X
8.
ACS Omega ; 5(38): 24329-24339, 2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33015449

RESUMO

Multiple therapeutic monoclonal antibodies (mAbs) are currently under development or in (pre)clinical study phases to reach regulatory approval. Among these, a new mAb against herpes simplex virus, HDIT101, was recently tested in healthy volunteers during a phase I clinical trial (first-in-human, dose escalation). In the frame of the pharmacokinetic evaluation of this new therapy, a mass spectrometric (MS)-based method was developed for the quantification of HDIT101 in human plasma using liquid chromatography coupled to tandem mass spectrometry. In this work, we describe the development of this bioanalytical assay using the quantification of a HDIT101 surrogate peptide, the assay validation procedure according to the FDA guidelines within the calibration range from 20 to 5000 µg/mL, and its application to plasma samples from the first-in-human clinical trial. This work presents a generic workflow for the development of MS-based quantification assays of new therapeutic antibodies that allows reaching high immunopurification recovery (>98% for HDIT101 over the full calibration range with a precision of 6.9% CV). Surrogate peptide and stable isotopically labeled internal standard were stable, and batch-to-batch accuracies and precisions at the four quality standard levels ranged between -2 and 5% bias and 8 and 11% CV, respectively.

9.
Nat Chem Biol ; 16(10): 1120-1128, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690945

RESUMO

The NUDIX hydrolase NUDT15 was originally implicated in sanitizing oxidized nucleotides, but was later shown to hydrolyze the active thiopurine metabolites, 6-thio-(d)GTP, thereby dictating the clinical response of this standard-of-care treatment for leukemia and inflammatory diseases. Nonetheless, its physiological roles remain elusive. Here, we sought to develop small-molecule NUDT15 inhibitors to elucidate its biological functions and potentially to improve NUDT15-dependent chemotherapeutics. Lead compound TH1760 demonstrated low-nanomolar biochemical potency through direct and specific binding into the NUDT15 catalytic pocket and engaged cellular NUDT15 in the low-micromolar range. We also employed thiopurine potentiation as a proxy functional readout and demonstrated that TH1760 sensitized cells to 6-thioguanine through enhanced accumulation of 6-thio-(d)GTP in nucleic acids. A biochemically validated, inactive structural analog, TH7285, confirmed that increased thiopurine toxicity takes place via direct NUDT15 inhibition. In conclusion, TH1760 represents the first chemical probe for interrogating NUDT15 biology and potential therapeutic avenues.


Assuntos
Pirofosfatases/antagonistas & inibidores , Pirofosfatases/metabolismo , Sítios de Ligação , Linhagem Celular , Desenho de Fármacos , Desenvolvimento de Medicamentos , Escherichia coli , Humanos , Pirofosfatase Inorgânica/antagonistas & inibidores , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Pirofosfatases/química , Pirofosfatases/genética , Relação Estrutura-Atividade
10.
EMBO Mol Med ; 12(3): e10419, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-31950591

RESUMO

The deoxycytidine analogue cytarabine (ara-C) remains the backbone treatment of acute myeloid leukaemia (AML) as well as other haematological and lymphoid malignancies, but must be combined with other chemotherapeutics to achieve cure. Yet, the underlying mechanism dictating synergistic efficacy of combination chemotherapy remains largely unknown. The dNTPase SAMHD1, which regulates dNTP homoeostasis antagonistically to ribonucleotide reductase (RNR), limits ara-C efficacy by hydrolysing the active triphosphate metabolite ara-CTP. Here, we report that clinically used inhibitors of RNR, such as gemcitabine and hydroxyurea, overcome the SAMHD1-mediated barrier to ara-C efficacy in primary blasts and mouse models of AML, displaying SAMHD1-dependent synergy with ara-C. We present evidence that this is mediated by dNTP pool imbalances leading to allosteric reduction of SAMHD1 ara-CTPase activity. Thus, SAMHD1 constitutes a novel biomarker for combination therapies of ara-C and RNR inhibitors with immediate consequences for clinical practice to improve treatment of AML.


Assuntos
Citarabina/farmacologia , Leucemia Mieloide Aguda , Pirofosfatases/metabolismo , Ribonucleotídeo Redutases/antagonistas & inibidores , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Animais , Arabinofuranosilcitosina Trifosfato/metabolismo , Camundongos
11.
Chem Sci ; 11(17): 4381-4390, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-34122895

RESUMO

Organocatalysis has revolutionized asymmetric synthesis. However, the supramolecular interactions of organocatalysts in solution are often neglected, although the formation of catalyst aggregates can have a strong impact on the catalytic reaction. For phosphoric acid based organocatalysts, we have now established that catalyst-catalyst interactions can be suppressed by using macrocyclic catalysts, which react predominantly in a monomeric fashion, while they can be favored by integration into a bifunctional catenane, which reacts mainly as phosphoric acid dimers. For acyclic phosphoric acids, we found a strongly concentration dependent behavior, involving both monomeric and dimeric catalytic pathways. Based on a detailed experimental analysis, DFT-calculations and direct NMR-based observation of the catalyst aggregates, we could demonstrate that intermolecular acid-acid interactions have a drastic influence on the reaction rate and stereoselectivity of asymmetric transfer-hydrogenation catalyzed by chiral phosphoric acids.

13.
Virology ; 531: 260-268, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30959264

RESUMO

SAMHD1 is a human restriction factor known to prevent infection of macrophages, resting CD4+ T cells, and dendritic cells by HIV-1. To test the contribution of MxB to the ability of SAMHD1 to block HIV-1 infection, we created human THP-1 cell lines that were knocked out for expression of MxB, SAMHD1, or both. Interestingly, MxB depletion renders SAMHD1 ineffective against HIV-1 but not SIVmac. We observed similar results in human primary macrophages that were knockdown for the expression of MxB. To understand how MxB assists SAMHD1 restriction of HIV-1, we examined direct interaction between SAMHD1 and MxB in pull-down experiments. In addition, we investigated several properties of SAMHD1 in the absence of MxB expression, including subcellular localization, phosphorylation of the SAMHD1 residue T592, and dNTPs levels. These experiments showed that SAMHD1 restriction of HIV-1 requires expression of MxB.


Assuntos
Infecções por HIV/metabolismo , HIV-1/fisiologia , Proteínas de Resistência a Myxovirus/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Vírus da Imunodeficiência Símia/fisiologia , Motivos de Aminoácidos , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Proteínas de Resistência a Myxovirus/genética , Fosforilação , Ligação Proteica , Proteína 1 com Domínio SAM e Domínio HD/química , Proteína 1 com Domínio SAM e Domínio HD/genética , Especificidade da Espécie
14.
J Gen Virol ; 100(4): 656-661, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30767852

RESUMO

The release of porcine endogenous retrovirus (PERV) particles from pig cells is a potential risk factor during xenotransplantation by way of productively infecting the human transplant recipient. Potential countermeasures against PERV replication are restriction factors that block retroviral replication. SAMHD1 is a triphosphohydrolase that depletes the cellular pool of dNTPs in non-cycling cells starving retroviral reverse transcription. We investigated the antiviral activity of human SAMHD1 against PERV and found that SAMHD1 potently restricts its reverse transcription in human monocytes, monocyte-derived dendritic cells (MDDC), or macrophages (MDM) and in monocytic THP-1 cells. Degradation of SAMHD1 by SIVmac Vpx or CRISPR/Cas9 knock-out of SAMHD1 allowed for PERV reverse transcription. Addition of deoxynucleosides alleviated the SAMHD1-mediated restriction suggesting that SAMHD1-mediated degradation of dNTPs restricts PERV replication in these human immune cells. In conclusion, our findings highlight SAMHD1 as a potential barrier to PERV transmission from pig transplants to human recipients during xenotransplantation.


Assuntos
Retrovirus Endógenos/fisiologia , Xenoenxertos/metabolismo , Xenoenxertos/virologia , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Animais , Sistemas CRISPR-Cas/fisiologia , Linhagem Celular , Células HEK293 , Humanos , Macrófagos/metabolismo , Macrófagos/virologia , Monócitos/metabolismo , Monócitos/virologia , Transcrição Reversa/fisiologia , Suínos , Células THP-1 , Transplante Heterólogo/métodos , Replicação Viral/fisiologia
15.
Langmuir ; 35(3): 767-778, 2019 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-30576151

RESUMO

Ultrasmall gold nanoparticles with a diameter of 1.8 nm were synthesized by reduction of tetrachloroauric acid with sodium borohydride in the presence of l-cysteine, with natural isotope abundance as well as 13C-labeled and 15N-labeled. The particle diameter was determined by high-resolution transmission electron microscopy and differential centrifugal sedimentation. X-ray photoelectron spectroscopy confirmed the presence of metallic gold with only a few percent of oxidized Au(+I) species. The surface structure and the coordination environment of the cysteine ligands on the ultrasmall gold nanoparticles were studied by a variety of homo- and heteronuclear NMR spectroscopic techniques including 1H-13C-heteronuclear single-quantum coherence and 13C-13C-INADEQUATE. Further information on the binding situation (including the absence of residual or detached l-cysteine in the solution) and on the nanoparticle diameter (indicating the well-dispersed state) was obtained by diffusion-ordered spectroscopy (1H-, 13C-, and 1H-13C-DOSY). Three coordination environments of l-cysteine on the gold surface were identified that were ascribed to different crystallographic sites, supported by geometric considerations of the nanoparticle ultrastructure. The particle size data and the NMR-spectroscopic analysis gave a particle composition of about Au174(cysteine)67.

16.
Blood Cancer J ; 8(11): 98, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341277

RESUMO

Sterile alpha motif and histidine/aspartic acid domain containing protein 1 (SAMHD1) limits the efficacy of cytarabine (ara-C) used in AML by hydrolyzing its active metabolite ara-CTP and thus represents a promising therapeutic target. SAMHD1 has also been implicated in DNA damage repair that may impact DNA damage-inducing therapies such as anthracyclines, during induction therapy. To determine whether SAMHD1 limits ara-C efficacy during induction or consolidation therapy, SAMHD1 protein levels were assessed in two patient cohorts of de novo AML from The University of Texas MD Anderson Cancer Center (USA) and the National University Hospital (Singapore), respectively, using immunohistochemistry and tissue microarrays. SAMHD1 was expressed at a variable level by AML blasts but not in a broad range of normal hematopoietic cells in reactive bone marrows. A sizeable patient subset with low SAMHD1 expression (<25% of positive blasts) was identified, which was significantly associated with longer event-free (EFS) and overall (OS) survival in patients receiving high-dose cytarabine (HDAC) during consolidation. Therefore, evaluation of SAMHD1 expression level in AML blasts at diagnosis, may stratify patient groups for future clinical trials combining HDAC with novel SAMHD1 inhibitors as consolidation therapy.


Assuntos
Biomarcadores Tumorais , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Proteína 1 com Domínio SAM e Domínio HD/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Medula Óssea/patologia , Terapia Combinada , Quimioterapia de Consolidação , Citarabina/administração & dosagem , Feminino , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Adulto Jovem
17.
Chemistry ; 24(44): 11332-11343, 2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30015416

RESUMO

A new synthetic access to molecular tweezers with one or two aliphatic phosphate ester groups in the central benzene spacer-unit is presented. Alkynyl ester groups offer the prospect to attach additional functional units by click chemistry and greatly broaden the scope of these tools for chemical biology. We present two alternative strategies: the trichloroacetonitrile method involves activation of only one OH group of each phosphoric acid substituent by way of trichloroacetimidate intermediates and subsequent introduction of an aliphatic ester alcohol moiety. The method is versatile, robust and combines simple workup with high yields. Mono- and disubstituted novel host structures are thus accessible in a convenient way. Alternatively, the phosphoramidite strategy activates the hydroquinone precursor by way of phosphoramidite intermediates and couples the desired ester alcohols followed by mild oxidation to the desired phosphate esters. Each step of the synthesis is carried out at very mild conditions and allows to combine sensitive host candidates and recognition elements. After neutralization of the phosphoric acids to water-soluble tri- and tetra-anions the cavities of the new tweezer derivatives are open to bind lysine and arginine as well as peptidic guests. The concept of introducing clickable alkynyl phosphates to free OH groups may be transferred to other major macrocyclic host classes to introduce additional recognition elements, biomolecules or fluorescence labels.

18.
J Virol ; 92(17)2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29950411

RESUMO

Herpesvirus infections are highly prevalent in the human population and persist for life. They are often acquired subclinically but potentially progress to life-threatening diseases in immunocompromised individuals. The interferon system is indispensable for the control of herpesviral replication. However, the responsible antiviral effector mechanisms are not well characterized. The type I interferon-induced, human myxovirus resistance 2 (MX2) gene product MxB, a dynamin-like large GTPase, has recently been identified as a potent inhibitor of HIV-1. We now show that MxB also interferes with an early step of herpesvirus replication, affecting alpha-, beta-, and gammaherpesviruses before or at the time of immediate early gene expression. Defined MxB mutants influencing GTP binding and hydrolysis revealed that the effector mechanism against herpesviruses is thoroughly different from that against HIV-1. Overall, our findings demonstrate that MxB serves as a broadly acting intracellular restriction factor that controls the establishment of not only retrovirus but also herpesvirus infection of all three subfamilies.IMPORTANCE Human herpesviruses pose a constant threat to human health. Reactivation of persisting herpesvirus infections, particularly in immunocompromised individuals and the elderly, can cause severe diseases, such as zoster, pneumonia, encephalitis, or cancer. The interferon system is relevant for the control of herpesvirus replication as exemplified by fatal disease outcomes in patients with primary immunodeficiencies. Here, we describe the interferon-induced, human MX2 gene product MxB as an efficient restriction factor of alpha-, beta-, and gammaherpesviruses. MxB has previously been described as an inhibitor of HIV-1. Importantly, our mutational analyses of MxB reveal an antiviral mechanism of herpesvirus restriction distinct from that against HIV-1. Thus, the dynamin-like MxB GTPase serves as a broadly acting intracellular restriction factor that controls retrovirus as well as herpesvirus infections.


Assuntos
Infecções por Herpesviridae/prevenção & controle , Herpesviridae/fisiologia , Mutação , Proteínas de Resistência a Myxovirus/genética , Replicação Viral/genética , Células A549 , Herpesviridae/genética , Infecções por Herpesviridae/virologia , Humanos , Imunidade Inata , Interferons , Proteínas de Resistência a Myxovirus/imunologia , Replicação Viral/imunologia
19.
J Virol ; 91(19)2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747499

RESUMO

Human immunodeficiency virus type 1 (HIV-1) infection of dividing and nondividing cells involves regulatory interactions with the nuclear pore complex (NPC), followed by translocation to the nucleus and preferential integration into genomic areas in proximity to the inner nuclear membrane (INM). To identify host proteins that may contribute to these processes, we performed an overexpression screen of known membrane-associated NE proteins. We found that the integral transmembrane proteins SUN1/UNC84A and SUN2/UNC84B are potent or modest inhibitors of HIV-1 infection, respectively, and that suppression corresponds to defects in the accumulation of viral cDNA in the nucleus. While laboratory strains (HIV-1NL4.3 and HIV-1IIIB) are sensitive to SUN1-mediated inhibition, the transmitted founder viruses RHPA and ZM247 are largely resistant. Using chimeric viruses, we identified the HIV-1 capsid (CA) protein as a major determinant of sensitivity to SUN1, and in vitro-assembled capsid-nucleocapsid (CANC) nanotubes captured SUN1 and SUN2 from cell lysates. Finally, we generated SUN1-/- and SUN2-/- cells by using CRISPR/Cas9 and found that the loss of SUN1 had no effect on HIV-1 infectivity, whereas the loss of SUN2 had a modest suppressive effect. Taken together, these observations suggest that SUN1 and SUN2 may function redundantly to modulate postentry, nuclear-associated steps of HIV-1 infection.IMPORTANCE HIV-1 causes more than 1 million deaths per year. The life cycle of HIV-1 has been studied extensively, yet important steps that occur between viral capsid release into the cytoplasm and the expression of viral genes remain elusive. We propose here that the INM components SUN1 and SUN2, two members of the linker of nucleoskeleton and cytoskeleton (LINC) complex, may interact with incoming HIV-1 replication complexes and affect key steps of infection. While overexpression of these proteins reduces HIV-1 infection, disruption of the individual SUN2 and SUN1 genes leads to a mild reduction or no effect on infectivity, respectively. We speculate that SUN1/SUN2 may function redundantly in early HIV-1 infection steps and therefore influence HIV-1 replication and pathogenesis.


Assuntos
Proteínas do Capsídeo/genética , Infecções por HIV/prevenção & controle , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Transporte Ativo do Núcleo Celular/genética , Transporte Ativo do Núcleo Celular/fisiologia , Sistemas CRISPR-Cas/genética , Linhagem Celular , DNA Viral/genética , Inativação Gênica , Células HEK293 , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteínas Associadas aos Microtúbulos/genética , Poro Nuclear/metabolismo , Proteínas Nucleares/genética
20.
Exp Hematol ; 52: 32-39, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28502830

RESUMO

Sterile alpha motif and histidine/aspartic acid domain-containing protein 1 (SAMHD1) is a (deoxy)guanosine triphosphate (dGTP/GTP)-activated deoxyribonucleoside triphosphate (dNTP) triphosphohydrolase involved in cellular dNTP homoeostasis. Mutations in SAMHD1 have been associated with the hyperinflammatory disease Aicardi-Goutières syndrome (AGS). SAMHD1 also limits cells' permissiveness to infection with diverse viruses, including human immunodeficiency virus (HIV-1), and controls endogenous retroviruses. Increasing evidence supports the role of SAMHD1 as a tumor suppressor. However, SAMHD1 also can act as a resistance factor to nucleoside-based chemotherapies by hydrolyzing their active triphosphate metabolites, thereby reducing response of various malignancies to these anticancer drugs. Hence, informed cancer therapies must take into account the ambiguous properties of SAMHD1 as both an inhibitor of uncontrolled proliferation and a resistance factor limiting the efficacy of anticancer treatments. Here, we provide evidence that SAMHD1 is a double-edged sword for patients with acute myelogenous leukemia (AML). Our time-dependent analyses of The Cancer Genome Atlas (TCGA) AML cohort indicate that high expression of SAMHD1, even though it critically limits the efficacy of high-dose ara-C therapy, might be associated with more favorable disease progression.


Assuntos
Doenças Autoimunes do Sistema Nervoso/genética , Resistência a Medicamentos/genética , Proteínas Monoméricas de Ligação ao GTP/genética , Mutação , Malformações do Sistema Nervoso/genética , Proteínas Supressoras de Tumor/genética , Doença Aguda , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Doenças Autoimunes do Sistema Nervoso/metabolismo , Azacitidina/análogos & derivados , Azacitidina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Citarabina/uso terapêutico , Decitabina , Humanos , Leucemia Mieloide/tratamento farmacológico , Leucemia Mieloide/genética , Leucemia Mieloide/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Malformações do Sistema Nervoso/metabolismo , Proteína 1 com Domínio SAM e Domínio HD , Análise de Sobrevida , Resultado do Tratamento , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...