Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38663995

RESUMO

BACKGROUND: We aimed to investigate the clinical, imaging and fluid biomarker characteristics in patients with antidiacylglycerol lipase alpha (DAGLA)-autoantibody-associated cerebellitis. METHODS: Serum and cerebrospinal fliud (CSF) samples from four index patients were subjected to comprehensive autoantibody screening by indirect immunofluorescence assay (IIFA). Immunoprecipitation, mass spectrometry and recombinant protein assays were used to identify the autoantigen. Sera from 101 patients with various neurological symptoms and a similar tissue staining pattern as the index patient samples, and 102 healthy donors were analysed in recombinant cell-based IIFA (RC-IIFA) with the identified protein. Epitope characterisation of all positive samples was performed via ELISA, immunoblot, immunoprecipitation and RC-IIFA using different DAGLA fragments. RESULTS: All index patients were relatively young (age: 18-34) and suffered from pronounced gait ataxia, dysarthria and visual impairments. Paraclinical hallmarks in early-stage disease were inflammatory CSF changes and cerebellar cortex hyperintensity in MRI. Severe cerebellar atrophy developed in three of four patients within 6 months. All patient samples showed the same unclassified IgG reactivity with the cerebellar molecular layer. DAGLA was identified as the target antigen and confirmed by competitive inhibition experiments and DAGLA-specific RC-IIFA. In RC-IIFA, serum reactivity against DAGLA was also found in 17/101 disease controls, including patients with different clinical phenotypes than the one of the index patients, and in 1/102 healthy donors. Epitope characterisation revealed that 17/18 anti-DAGLA-positive control sera reacted with a C-terminal intracellular DAGLA 583-1042 fragment, while the CSF samples of the index patients targeted a conformational epitope between amino acid 1 and 157. CONCLUSIONS: We propose that anti-DAGLA autoantibodies detected in CSF, with a characteristic tissue IIFA pattern, represent novel biomarkers for rapidly progressive cerebellitis.

2.
Cerebellum ; 23(1): 260-266, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36696031

RESUMO

We report two novel cases of autoimmune cerebellar ataxia (ACA) associated with anti-glutamate receptor δ2 antibodies (Gluδ2-Abs). The first case was confirmed by indirect immunofluorescence and cell-based assays: a 29-year-old woman presented after 5 days of headache and vomiting, a pancerebellar syndrome, downbeat nystagmus, decreased visual acuity linked to bilateral retrobulbar optic neuritis (RON), and lymphocytic pleocytosis in the cerebrospinal fluid (CSF) without any abnormality detected using cerebral magnetic resonance imaging (MRI). Second-line immunotherapy allowed progressive clinical improvement, with full recovery achieved after a 4-year follow-up. Thereafter, we retrospectively tested Gluδ2-Abs in 350 patients with a suspicion of autoimmune encephalitis without characterized autoantibody. We identified a second case, a 12-year-old boy who developed 10 days after a respiratory infection, a static cerebellar syndrome with lymphocytosis in the CSF, and right cerebellum hyperintensity in MRI. Five days of corticosteroid treatment allowed a quick clinical improvement. No tumor was identified in both cases, whereas laboratory analyses revealed autoimmune stigma. The present cases suggested that ACA associated with Gluδ2-Abs is an extremely rare but treatable disease. Therefore, testing for Gluδ2-Abs might be considered in the setting of suspected ACA and no initial antibody identification. The visual deficits and ocular motility abnormalities observed in the first reported case might be part of the clinical spectrum of Gluδ2-Abs ACA. Young age, infectious prodromes, lymphocytic pleocytosis, and autoimmune background usually appear together with this syndrome and should lead to discuss the initiation of immunotherapy (after ruling out differential diagnosis, especially infectious causes).


Assuntos
Ataxia Cerebelar , Masculino , Feminino , Humanos , Adulto , Criança , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/tratamento farmacológico , Leucocitose , Estudos Retrospectivos , Autoanticorpos/líquido cefalorraquidiano , Receptores de Glutamato
4.
Front Immunol ; 14: 1265797, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841252

RESUMO

Background: Purkinje cytoplasmic autoantibody type 1 (PCA-1)/anti-Yo autoimmunity is a common high-risk paraneoplastic neurological disorder, traditionally attributed antigenically to cerebellar degeneration-related protein 2 (CDR2), predominantly affecting women with gynecologic or breast adenocarcinoma. Single-modality CDR2 testing may produce false-positive results. We assessed the performance characteristics of the more recently purported major PCA-1/Yo antigen, CDR2-like (CDR2L), side by side with CDR2, in a line blot format. Methods: CDR2 and CDR2L were tested in six specimen groups (serum and cerebrospinal fluid (CSF)). Group 1, PCA-1/Yo mouse brain indirect immunofluorescence assay (IFA) positives; Group 2, PCA-1/Yo IFA mimics; Group 3, suspected CDR2 line blot false positives; Group 4, consecutive patient samples tested for neural antibodies over 1 year; Group 5, healthy subject serums; and Group 6, polyclonal (non-specific) immunoglobulin G (IgG)-positive serums. Results: Group 1: Of 64 samples tested, all but two were CDR2 positive (both CSF samples) and all were CDR2L positive. In individual patients, CDR2L values were always higher than CDR2. The two "CDR2L-only" positives were CSF samples with low titer PCA-1/Yo by IFA with serum negativity but with typical clinical phenotype. Group 2: All 51 PCA-1/Yo mimics were CDR2/CDR2L negative. Group 3: Nine samples [six of 1289 (0.47%) serums and three of 700 CSF samples (0.43%) were PCA-1/Yo IFA negative/CDR2 positive; two of the six available (serums from the same patient) were also CDR2L positive; the other four CDR2L negative had low CDR2 values (17-22). Group 4: Twenty-two patients had unexpected CDR2 or CDR2L positivity; none had tissue IFA positivity. Eleven of the 2,132 serum (0.5%) and three of the 677 CSF (0.4%) samples were CDR2 positive; median value was 19 (range, 11-48). Seven of the 2,132 serum (0.3%) and three of the 677 CSF (0.4%) samples were CDR2L positive; median value was 18 (range, 11-96). Group 5: All 151 healthy serum samples were negative. Group 6: One of the 46 polyclonal serum samples was CDR2L positive. Optimum overall performance was accomplished by requiring both CDR2 and CDR2L positivity in serum (sensitivity, 100%; and specificity, 99.9%) and positivity for CDR2L in CSF (sensitivity, 100%; and specificity, 99.6%). Conclusion: CDR2L provides additional PCA-1/anti-Yo sensitivity in CSF, and dual positivity with CDR2 provides additional specificity assurance in serum. Combining antigen-specific and tissue-based assays optimizes PCA-1/anti-Yo testing.


Assuntos
Doenças Neurodegenerativas , Degeneração Paraneoplásica Cerebelar , Animais , Camundongos , Humanos , Feminino , Autoanticorpos , Autoimunidade , Proteínas do Tecido Nervoso/metabolismo , Citoplasma/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-37550073

RESUMO

BACKGROUND AND OBJECTIVES: Neural antibodies are detected by tissue-based indirect immunofluorescence assay (IFA) in Mayo Clinic's Neuroimmunology Laboratory practice, but the process of characterizing and validating novel antibodies is lengthy. We report our assessment of human protein arrays. METHODS: Assessment of arrays (81% human proteome coverage) was undertaken using diverse known positive samples (17 serum and 14 CSF). Samples from patients with novel neural antibodies were reflexed from IFA to arrays. Confirmatory assays were cell-based (CBA) or line blot. Epitope mapping was undertaken using phage display immunoprecipitation sequencing (PhiPSeq). RESULTS: Control positive samples known to be reactive with linear epitopes of intracellular antigens (e.g., ANNA-1 [anti-Hu]) were readily identified by arrays in 20 of 21 samples. By contrast, 10 positive controls known to be enriched with antibodies against cell surface protein conformational epitopes (e.g., GluN1 subunit of NMDA-R) were indistinguishable from background signal. Three antibodies, previously characterized by other investigators (but unclassified in our laboratory), were unmasked in 4 patients using arrays (July-December 2022): Neurexin-3α, 1 patient; regulator of gene protein signaling (RGS)8, 1 patient; and seizure-related homolog like 2 (SEZ6L2), 2 patients. All were accompanied by previously reported phenotypes (encephalitis, 1; cerebellar ataxia, 3). Patient 1 had subacute onset of seizures and encephalopathy. Neurexin-3α ranked high in CSF (second ranked neural protein) but low in serum (660th overall). Neurexin-3α CBA was positive in both samples. Patient 2 presented with rapidly progressive cerebellar ataxia. RGS8 ranked the highest neural protein in available CSF sample by array (third overall). RGS8-specific line blot was positive. Patients 3 and 4 had rapidly progressive cerebellar ataxia. SEZ6L2 was the highest ranked neural antigen by arrays in all samples (CSF, 1, serum, 2; Patient 3, ranked 9th overall in CSF, 11th in serum; Patient 4, 6th overall in serum]). By PhIPSeq, diverse neurexin-3α epitopes (including cell surface) were detected in CSF from patient 1, but no SEZ6L2 peptides were detected for serum or CSF samples from Patient 3. DISCUSSION: Individualized autoimmune neurologic diagnoses may be accelerated using protein arrays. They are optimal for detection of intracellular antigen-reactive antibodies, though certain cell surface-directed antibodies (neurexin-3α and SEZ6L2) may also be detected.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Ataxia Cerebelar , Proteínas RGS , Humanos , Análise Serial de Proteínas , Anticorpos , Doenças Autoimunes do Sistema Nervoso/diagnóstico , Epitopos
7.
J Neuroinflammation ; 20(1): 88, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36997937

RESUMO

BACKGROUND: Septins are cytoskeletal proteins with filament forming capabilities, which have multiple roles during cell division, cellular polarization, morphogenesis, and membrane trafficking. Autoantibodies against septin-5 are associated with non-paraneoplastic cerebellar ataxia, and autoantibodies against septin-7 with encephalopathy with prominent neuropsychiatric features. Here, we report on newly identified autoantibodies against septin-3 in patients with paraneoplastic cerebellar ataxia. We also propose a strategy for anti-septin autoantibody determination. METHODS: Sera from three patients producing similar immunofluorescence staining patterns on cerebellar and hippocampal sections were subjected to immunoprecipitation followed by mass spectrometry. The identified candidate antigens, all of which were septins, were expressed recombinantly in HEK293 cells either individually, as complexes, or combinations missing individual septins, for use in recombinant cell-based indirect immunofluorescence assays (RC-IIFA). Specificity for septin-3 was further confirmed by tissue IIFA neutralization experiments. Finally, tumor tissue sections were analyzed immunohistochemically for septin-3 expression. RESULTS: Immunoprecipitation with rat cerebellum lysate revealed septin-3, -5, -6, -7, and -11 as candidate target antigens. Sera of all three patients reacted with recombinant cells co-expressing septin-3/5/6/7/11, while none of 149 healthy control sera was similarly reactive. In RC-IIFAs the patient sera recognized only cells expressing septin-3, individually and in complexes. Incubation of patient sera with five different septin combinations, each missing one of the five septins, confirmed the autoantibodies' specificity for septin-3. The tissue IIFA reactivity of patient serum was abolished by pre-incubation with HEK293 cell lysates overexpressing the septin-3/5/6/7/11 complex or septin-3 alone, but not with HEK293 cell lysates overexpressing septin-5 as control. All three patients had cancers (2 × melanoma, 1 × small cell lung cancer), presented with progressive cerebellar syndromes, and responded poorly to immunotherapy. Expression of septin-3 was demonstrated in resected tumor tissue available from one patient. CONCLUSIONS: Septin-3 is a novel autoantibody target in patients with paraneoplastic cerebellar syndromes. Based on our findings, RC-IIFA with HEK293 cells expressing the septin-3/5/6/7/11 complex may serve as a screening tool to investigate anti-septin autoantibodies in serological samples with a characteristic staining pattern on neuronal tissue sections. Autoantibodies against individual septins can then be confirmed by RC-IIFA expressing single septins.


Assuntos
Autoanticorpos , Autoimunidade , Ataxia Cerebelar , Animais , Humanos , Ratos , Ataxia Cerebelar/imunologia , Células HEK293 , Neurônios/metabolismo
8.
Front Cell Neurosci ; 17: 1077204, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794262

RESUMO

Introduction: The antibody repertoire from CSF-derived antibody-secreting cells and memory B-cells in patients with encephalitis contains a considerable number of antibodies that do not target the disease-defining autoantigen such as the GABA or NMDA receptors. This study focuses on the functional relevance of autoantibodies to brain blood vessels in patients with GABAA and NMDA receptor encephalitis. Methods: We tested 149 human monoclonal IgG antibodies from the cerebrospinal fluid of six patients with different forms of autoimmune encephalitis on murine brain sections for reactivity to blood vessels using immunohistochemistry. Positive candidates were tested for reactivity with purified brain blood vessels, effects on transendothelial electrical resistance (TEER), and expression of tight junction proteins as well as gene regulation using human brain microvascular endothelial hCMEC/D3 cells as in vitro blood-brain barrier model. One blood-vessel reactive antibody was infused intrathecally by pump injection in mice to study in vivo binding and effects on tight junction proteins such as Occludin. Target protein identification was addressed using transfected HEK293 cells. Results: Six antibodies reacted with brain blood vessels, three were from the same patient with GABAAR encephalitis, and the other three were from different patients with NMDAR encephalitis. One antibody from an NMDAR encephalitis patient, mAb 011-138, also reacted with cerebellar Purkinje cells. In this case, treatment of hCMEC/D3 cells resulted in decreased TEER, reduced Occludin expression, and mRNA levels. Functional relevance in vivo was confirmed as Occludin downregulation was observed in mAb 011-138-infused animals. Unconventional Myosin-X was identified as a novel autoimmune target for this antibody. Discussion: We conclude that autoantibodies to blood vessels occur in autoimmune encephalitis patients and might contribute to a disruption of the blood-brain barrier thereby suggesting a potential pathophysiological relevance of these antibodies.

9.
Ann Neurol ; 92(6): 1090-1101, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36053822

RESUMO

BACKGROUND AND OBJECTIVES: We sought to determine clinical significance of neuronal septin autoimmunity and evaluate for potential IgG effects. METHODS: Septin-IgGs were detected by indirect immunofluorescence assays (IFAs; mouse tissue and cell based) or Western blot. IgG binding to (and internalization of) extracellular septin epitopes were evaluated for by live rat hippocampal neuron assay. The impact of purified patient IgGs on murine cortical neuron function was determined by recording extracellular field potentials in a multielectrode array platform. RESULTS: Septin-IgGs were identified in 23 patients. All 8 patients with septin-5-IgG detected had cerebellar ataxia, and 7 had prominent eye movement disorders. One of 2 patients with co-existing septin-7-IgG had additional psychiatric phenotype (apathy, emotional blunting, and poor insight). Fifteen patients had septin-7 autoimmunity, without septin-5-IgG detected. Disorders included encephalopathy (11; 2 patients with accompanying myelopathy, and 2 were relapsing), myelopathy (3), and episodic ataxia (1). Psychiatric symptoms (≥1 of agitation, apathy, catatonia, disorganized thinking, and paranoia) were prominent in 6 of 11 patients with encephalopathic symptoms. Eight of 10 patients with data available (from 23 total) improved after immunotherapy, and a further 2 patients improved spontaneously. Staining of plasma membranes of live hippocampal neurons produced by patient IgGs (subclasses 1 and 2) colocalized with pre- and post-synaptic markers. Decreased spiking and bursting behavior in mixed cultures of murine glutamatergic and GABAergic cortical neurons produced by patient IgGs were attributable to neither antigenic crosslinking and internalization nor complement activation. INTERPRETATION: Septin-IgGs are predictive of distinct treatment-responsive autoimmune central nervous system (CNS) disorders. Live neuron binding and induced electrophysiologic effects by patient IgGs may support septin-specific pathophysiology. ANN NEUROL 2022;92:1090-1101.


Assuntos
Encefalopatias , Doenças da Medula Espinal , Animais , Ratos , Camundongos , Septinas/metabolismo , Autoimunidade , Neurônios/metabolismo , Imunoglobulina G/metabolismo
10.
Artigo em Inglês | MEDLINE | ID: mdl-33782191

RESUMO

OBJECTIVE: To describe the identification of regulator of G-protein signaling 8 (RGS8) as an autoantibody target in patients with cerebellar syndrome associated with lymphoma. METHODS: Sera of 4 patients with a very similar unclassified reactivity against cerebellar Purkinje cells were used in antigen identification experiments. Immunoprecipitations with cerebellar lysates followed by mass spectrometry identified the autoantigen, which was verified by recombinant immunofluorescence assay, immunoblot, and ELISA with the recombinant protein. RESULTS: The sera and CSF of 4 patients stained the Purkinje cells and molecular layer of the cerebellum. RGS8 was identified as the target antigen in all 4 sera. In a neutralization experiment, recombinant human RGS8 was able to neutralize the autoantibodies' tissue reaction. Patient sera and CSF showed a specific reactivity against recombinant RGS8 in ELISA and immunoblot, whereas no such reactivity was detectable in the controls. Clinical data were available for 2 of the 4 patients, remarkably both presented with cerebellar syndrome accompanied by B-cell lymphoma of the stomach (patient 1, 53 years) or Hodgkin lymphoma (patient 2, 74 years). CONCLUSION: Our results indicate that autoantibodies against the intracellular Purkinje cell protein RGS8 represent new markers for paraneoplastic cerebellar syndrome associated with lymphoma. CLASSIFICATION OF EVIDENCE: This study provided Class IV evidence that autoantibodies against the intracellular Purkinje cell protein RGS8 are associated with paraneoplastic cerebellar syndrome in lymphoma.


Assuntos
Autoanticorpos/imunologia , Degeneração Paraneoplásica Cerebelar/imunologia , Células de Purkinje/imunologia , Proteínas RGS/metabolismo , Idoso , Animais , Cerebelo/patologia , Feminino , Células HEK293 , Haplorrinos , Voluntários Saudáveis , Humanos , Linfoma/imunologia , Masculino , Pessoa de Meia-Idade , Degeneração Paraneoplásica Cerebelar/complicações , Ratos
11.
Neurology ; 93(10): e954-e963, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31371564

RESUMO

OBJECTIVE: To describe phenotypes, treatment response, and outcomes of autoimmunity targeting a synaptic vesicle coat protein, the neuronal (B2) form of adaptor protein-3 (AP3). METHODS: Archived serum and CSF specimens (from 616,025 screened) harboring unclassified synaptic antibodies mimicking amphiphysin-immunoglobulin G (IgG) on tissue-based indirect immunofluorescence assay (IFA) were re-evaluated for novel IgG staining patterns. Autoantigens were identified by western blot and mass spectrometry. Recombinant western blot and cell-binding assay (CBA) were used to confirm antigen specificity. Clinical data were obtained retrospectively. RESULTS: Serum (10) and CSF (6) specimens of 10 patients produced identical IFA staining patterns throughout mouse nervous system tissues, most prominently in cerebellum (Purkinje neuronal perikarya, granular layer synapses, and dentate regions), spinal cord gray matter, dorsal root ganglia, and sympathetic ganglia. The antigen revealed by mass spectrometry analysis and confirmed by recombinant assays (western blot and CBA) was AP3B2 in all. Of 10 seropositive patients, 6 were women; median symptom onset age was 42 years (range 24-58). Clinical information was available for 9 patients, all with subacute onset and rapidly progressive gait ataxia. Neurologic manifestations were myeloneuropathy (3), peripheral sensory neuropathy (2), cerebellar ataxia (2), and spinocerebellar ataxia (2). Five patients received immunotherapy; none improved, but they did not worsen over the follow-up period (median 36 months; range 3-94). Two patients (both with cancer) died. One of 50 control sera was positive by western blot only (but not by IFA or CBA). CONCLUSION: AP3B2 (previously named ß-neuronal adaptin-like protein) autoimmunity appears rare, is accompanied by ataxia (sensory or cerebellar), and is potentially treatable.


Assuntos
Complexo 3 de Proteínas Adaptadoras/metabolismo , Subunidades beta do Complexo de Proteínas Adaptadoras/metabolismo , Autoimunidade/fisiologia , Transtornos Neurológicos da Marcha/diagnóstico por imagem , Transtornos Neurológicos da Marcha/metabolismo , Imunoglobulina G/metabolismo , Adulto , Animais , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Células Cultivadas , Ataxia Cerebelar/diagnóstico por imagem , Ataxia Cerebelar/metabolismo , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Ratos
12.
Front Immunol ; 9: 1447, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30038610

RESUMO

BACKGROUND: A plurality of neurological syndromes is associated with autoantibodies against neural antigens relevant for diagnosis and therapy. Identification of these antigens is crucial to understand the pathogenesis and to develop specific immunoassays. Using an indirect immunofluorescence assay (IFA)-based approach and applying different immunoprecipitation (IP), chromatographic and mass spectrometric protocols was possible to isolate and identify a spectrum of autoantigens from brain tissue. METHODS: Sera and CSF of 320 patients suspected of suffering from an autoimmune neurological syndrome were comprehensively investigated for the presence of anti-neural IgG autoantibodies by IFA using mosaics of biochips with brain tissue cryosections and established cell-based recombinant antigen substrates as well as immunoblots. Samples containing unknown brain tissue-specific autoantibodies were subjected to IP with cryosections of cerebellum and hippocampus (rat, pig, and monkey) immobilized to glass slides or with lysates produced from homogenized tissue, followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, tryptic digestion, and matrix-assisted laser desorption/ionization-time of flight mass spectrometry analysis. Identifications were confirmed by IFA with recombinant HEK293 cells and by neutralizing the patients' autoantibodies with the respective recombinantly expressed antigens in the tissue-based immunofluorescence test. RESULTS: Most samples used in this study produced speckled, granular, or homogenous stainings of the hippocampal and cerebellar molecular and/or granular layers. Others exclusively stained the Purkinje cells. Up to now, more than 20 different autoantigens could be identified by this approach, among them ATP1A3, CPT1C, Flotillin1/2, ITPR1, NBCe1, NCDN, RGS8, ROCK2, and Syntaxin-1B as novel autoantigens. DISCUSSION: The presented antigen identification strategy offers an opportunity for identifying up to now unknown neural autoantigens. Recombinant cell substrates containing the newly identified antigens can be used in serology and the clinical relevance of the autoantibodies can be rapidly evaluated in cohort studies.

15.
Neurol Neuroimmunol Neuroinflamm ; 4(1): e307, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27957508

RESUMO

OBJECTIVE: To report on a novel neuronal target antigen in 3 patients with autoimmune cerebellar degeneration. METHODS: Three patients with subacute to chronic cerebellar ataxia and controls underwent detailed clinical and neuropsychological assessment together with quantitative high-resolution structural MRI. Sera and CSF were subjected to comprehensive autoantibody screening by indirect immunofluorescence assay (IFA) and immunoblot. Immunoprecipitation with lysates of hippocampus and cerebellum combined with mass spectrometric analysis was used to identify the autoantigen, which was verified by recombinant expression in HEK293 cells and use in several immunoassays. Multiparameter flow cytometry was performed on peripheral blood and CSF, and peripheral blood was subjected to T-cell receptor spectratyping. RESULTS: Patients presented with a subacute to chronic cerebellar and brainstem syndrome. MRI was consistent with cortical and cerebellar gray matter atrophy associated with subsequent neuroaxonal degeneration. IFA screening revealed strong immunoglobulin G1 reactivity in sera and CSF with hippocampal and cerebellar molecular and granular layers, but not with a panel of 30 recombinantly expressed established neural autoantigens. Neurochondrin was subsequently identified as the target antigen, verified by IFA and immunoblot with HEK293 cells expressing human neurochondrin as well as the ability of recombinant neurochondrin to neutralize the autoantibodies' tissue reaction. Immune phenotyping revealed intrathecal accumulation and activation of B and T cells during the acute but not chronic phase of the disease. T-cell receptor spectratyping suggested an antigen-specific T-cell response accompanying the formation of antineurochondrin autoantibodies. No such neurochondrin reactivity was found in control cohorts of various neural autoantibody-associated neurologic syndromes, relapsing-remitting multiple sclerosis, cerebellar type of multiple system atrophy, hereditary cerebellar ataxias, other neurologic disorders, or healthy donors. CONCLUSION: Neurochondrin is a neuronal target antigen in autoimmune cerebellar degeneration.

16.
Neurol Neuroimmunol Neuroinflamm ; 3(4): e255, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27458598

RESUMO

OBJECTIVE: To report on a Caucasian patient who developed steroid-responsive transverse myelitis, graft vs host disease of the gut, and anti-GluRδ2 after allogenic stem cell transplantation. METHODS: Histoimmunoprecipitation (HIP) with the patient's serum and cryosections of rat and porcine cerebellum followed by mass spectrometry was used to identify the autoantigen. Correct identification was verified by indirect immunofluorescence using recombinant GluRδ2 expressed in HEK293 cells. RESULTS: The patient's serum produced a granular staining of the cerebellar molecular layer (immunoglobulin G1 and immunoglobulin G3; endpoint titer: 1:1,000) but did not react with other CNS tissues or 28 established recombinant neural autoantigens. HIP revealed a unique protein band at ∼110 kDa that was identified as GluRδ2. The patient's serum also stained GluRδ2 transfected but not mock-transfected HEK293 cells. Control sera from 38 patients with multiple sclerosis, 85 patients with other neural autoantibodies, and 205 healthy blood donors were negative for anti-GluRδ2. Preadsorption with lysate from HEK293-GluRδ2 neutralized the patient's tissue reaction whereas control lysate had no effect. In addition to anti-GluRδ2, the patient's serum contained immunoglobulin G autoantibodies against the pancreatic glycoprotein CUZD1, which are known to be markers of Crohn disease. CONCLUSIONS: In the present case, the development of anti-GluRδ2 was associated with transverse myelitis, which was supposedly triggered by the stem cell transplantation. Similar to encephalitis in conjunction with anti-GluRδ2 reported in a few Japanese patients, the patient's neurologic symptoms ameliorated after steroid therapy.

17.
Neurology ; 84(16): 1673-9, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25809299

RESUMO

OBJECTIVES: To identify an autoreactivity in a 66-year-old woman who presented with combined brainstem and cerebellar syndrome including vertical gaze palsy, severe progressive ataxia, and spastic tetraparesis, an acute deterioration of vision, dysarthria, and dysphagia with concurrent diagnosis of a colon adenocarcinoma. METHODS: Patient's serum and CSF underwent comprehensive autoantibody screening by indirect immunofluorescence assay and immunoblot. For autoantigen purification, a histo-immunoprecipitation technique was developed followed by mass spectrometrical analysis. Recombinant candidate antigens were expressed in HEK293 and used to verify the identification. RESULTS: Indirect immunofluorescence assay screening revealed strong immunoglobulin G reactivity with neural tissues in serum and CSF, but not with a panel of 28 recombinantly expressed established neural autoantigens. The hitherto unknown target antigen was identified as the neuronal Na(+)/K(+) ATPase. Epitope mapping and competitive inhibition experiments showed that the autoantibodies were directed against the membrane-spanning alpha 3 subunit (ATP1A3) of the enzyme but did not bind to extracellular epitopes. Immunohistochemical analysis revealed overexpression of this subunit in the patient's tumor. CONCLUSIONS: We describe a case of an anti-ATP1A3-associated neurologic disorder. Mutations in the gene encoding this neuronal surface protein have already been recognized as the cause of infantile alternating hemiplegia, rapid-onset dystonia parkinsonism, and CAPOS syndrome. Although the autoantibodies are unlikely to be pathogenic, they are likely to be rare biomarkers for the apparently paraneoplastic neurologic syndrome or for the tumor itself.


Assuntos
Adenocarcinoma/imunologia , Ataxia/fisiopatologia , Autoanticorpos/imunologia , Neoplasias do Colo/imunologia , Neurônios/imunologia , Síndromes Paraneoplásicas do Sistema Nervoso/imunologia , ATPase Trocadora de Sódio-Potássio/imunologia , Idoso , Autoanticorpos/sangue , Autoanticorpos/líquido cefalorraquidiano , Feminino , Células HEK293 , Humanos , Imunoglobulina G/imunologia , Síndromes Paraneoplásicas do Sistema Nervoso/sangue , Síndromes Paraneoplásicas do Sistema Nervoso/líquido cefalorraquidiano
18.
J Neuroinflammation ; 11: 206, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25498830

RESUMO

We report on a serum autoantibody associated with cerebellar ataxia. Immunohistochemical studies of sera from four patients referred for autoantibody testing revealed binding of high-titer (up to 1:5,000) IgG antibodies, mainly IgG1, to the molecular layer, Purkinje cell layer, and white matter on mouse, rat, porcine, and monkey cerebellum sections. The antibody bound to PC somata, dendrites, and axons, resulting in a binding pattern similar to that reported for anti-Ca/anti-ARHGAP26, but did not react with recombinant ARHGAP26. Extensive control studies were performed to rule out a broad panel of previously described paraneoplastic and non-paraneoplastic anti-neural autoantibodies. The characteristic binding pattern as well as double staining experiments suggested inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) as the target antigen. Verification of the antigen included specific neutralization of the tissue reaction following preadsorption with ITPR1 (but not ARHGAP26) and a dot-blot assay with purified ITPR1 protein. By contrast, anti-ARHGAP26-positive sera did not bind to ITPR1. In a parallel approach, a combination of histoimmunoprecipitation and mass spectrometry also identified ITPR1 as the target antigen. Finally, a recombinant cell-based immunofluorescence assay using HEK293 cells expressing ITPR1 and ARHGAP26, respectively, confirmed the identification of ITPR1. Mutations of ITPR1 have previously been implicated in spinocerebellar ataxia with and without cognitive decline. Our findings suggest a role of autoimmunity against ITPR1 in the pathogenesis of autoimmune cerebellitis and extend the panel of diagnostic markers for this disease.


Assuntos
Autoanticorpos/metabolismo , Ataxia Cerebelar/diagnóstico , Ataxia Cerebelar/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Adulto , Animais , Autoanticorpos/análise , Autoanticorpos/imunologia , Ataxia Cerebelar/imunologia , Feminino , Células HEK293 , Humanos , Receptores de Inositol 1,4,5-Trifosfato/análise , Receptores de Inositol 1,4,5-Trifosfato/imunologia , Macaca mulatta , Camundongos , Ratos , Suínos
19.
Mol Cell Biol ; 33(13): 2586-602, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23608535

RESUMO

The mitogen-activated protein kinase (MAPK)-activated protein kinases 2 and 3 (MK2/3) represent protein kinases downstream of the p38 MAPK. Using MK2/3 double-knockout (MK2/3(-/-)) mice, we analyzed the role of MK2/3 in cross-striated muscle by transcriptome and proteome analyses and by histology. We demonstrated enhanced expression of the slow oxidative skeletal muscle myofiber gene program, including the peroxisome proliferator-activated receptor gamma (PPARγ) coactivator 1α (PGC-1α). Using reporter gene and electrophoretic gel mobility shift assays, we demonstrated that MK2 catalytic activity directly regulated the promoters of the fast fiber-specific myosin heavy-chain IId/x and the slow fiber-specific sarco/endoplasmic reticulum Ca(2+)-ATPase 2 (SERCA2) gene. Elevated SERCA2a gene expression caused by a decreased ratio of transcription factor Egr-1 to Sp1 was associated with accelerated relaxation and enhanced contractility in MK2/3(-/-) cardiomyocytes, concomitant with improved force parameters in MK2/3(-/-) soleus muscle. These results link MK2/3 to the regulation of calcium dynamics and identify enzymatic activity of MK2/3 as a critical factor for modulating cross-striated muscle function by generating a unique muscle phenotype exhibiting both reduced fatigability and enhanced force in MK2/3(-/-) mice. Hence, the p38-MK2/3 axis may represent a novel target for the design of therapeutic strategies for diseases related to fiber type changes or impaired SERCA2 function.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Músculo Esquelético/fisiologia , Miócitos Cardíacos/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Quinase 12 Ativada por Mitógeno , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Contração Muscular/genética , Fibras Musculares Esqueléticas/patologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transativadores/genética , Fatores de Transcrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...