Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Great Lakes Res ; 48(2): 274-288, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36092777

RESUMO

The Laurentian Great Lakes have experienced multiple anthropogenic changes in the past century, including cultural eutrophication, phosphorus abatement initiatives, and the introduction of invasive species. Lake Ontario, the most downstream lake in the system, is considered to be among the most impaired. The benthos of Lake Ontario has been studied intensively in the last six decades and can provide insights into the impact of environmental changes over time. We used multivariate community analyses to examine temporal changes in community composition over the last 54 years, and to assess the major drivers of long-term changes in benthos. The benthic community of Lake Ontario underwent significant transformations that correspond with three major periods. The first period, termed the pre/early Dreissena period (1964-1990), was characterized by high densities of Diporeia, Sphaeriidae, and Tubificidae. During the next period defined by zebra mussel dominance (the 1990s) the same groups were still prevalent, but at altered densities. In the most recent period (2000s to present), which is characterized by the dominance and proliferation of quagga mussels deeper into the lake, the community has changed dramatically: Diporeia almost completely disappeared, Sphaeriidae have greatly declined, and densities of quagga mussels, Oligochaeta and Chironomidae have increased. The introduction of invasive dreissenids has changed the Lake Ontario benthic community, historically dominated by Diporeia, Oligochaeta and Sphaeriidae, to a community dominated by quagga mussels and Oligochaeta. Dreissenids, especially the quagga mussel, were the major drivers of these changes over the last half century.

2.
Ecology ; 102(12): e03528, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34469591

RESUMO

Benthic invertebrates are important trophic links in aquatic food webs and serve as useful bioindicators of environmental conditions because their responses integrate the effects of both water and sediment qualities. However, long-term data sets for benthic invertebrate assemblages across broad geographic areas are rare and, even if collected, historic data sets are often not readily accessible. This data set provides densities of benthic macroinvertebrates for all taxa collected during lake-wide surveys in Lake Ontario, a Laurentian Great Lake, from 1964 to 2018. This information resulted from surveys funded by the governments of the United States and Canada to investigate the status and changes of Lake Ontario benthic community. Of the 13 lake-wide benthic surveys conducted in Lake Ontario over the course of 54 yr, we were able to acquire taxonomic data to the species level for 11 of the surveys and data to the group level for the other two surveys. Density data are provided for taxa representing the Annelida, Arthropoda, Mollusca, Cnidaria, Nemertea, and Platyhelminthes phyla. Univariate and multivariate analyses revealed that the compositional structure of Lake Ontario invertebrate assemblages differed markedly by depth and were also significantly altered by the Dreissena spp. invasion in early 1990s. The introduction of invasive dreissenids has changed the community historically dominated by Diporeia, Oligochaeta, and Sphaeriidae, to a community dominated by quagga mussels and Oligochaeta. Considering the rarity of long-term benthic data of high taxonomic resolution in lake ecosystems, this data set could be useful to explore broader aspects of ecological theory, including effects of different environmental factors and invasive species on community organization, functional and phylogenetic diversity, and spatial scale of variation in community structure. The data set could also be useful for studies on individual species including abundance and distribution, species co-occurrence, and how the patterns of dominance and rarity change over space and time. Use of this data set for academic or educational purposes is encouraged as long as the data source is properly cited using the title of this Data Paper, the names of the authors, the year of publication, the journal name, and the article number.


Assuntos
Ecossistema , Lagos , Animais , Invertebrados , Ontário , Filogenia
3.
J Great Lakes Res ; 47(4): 1033-1039, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35949990

RESUMO

The amphipod Diporeia spp. has historically been an important component of the benthic food web of the Laurentian Great Lakes. The Great Lakes Water Quality Agreement included its population density as an indicator of ecological condition for Lake Superior, with target values of 220-320 m-2 in nearshore areas (≤100 m depth) and 30-160 m-2 in offshore areas (>100 m). To assess the status of Diporeia in Lake Superior, we used a probability-based lake-wide survey design to obtain estimates of Diporeia density and biomass in 2006, 2011 and 2016. A PONAR grab sampler was used to collect Diporeia at 50-53 sites each year, with approximately half in the nearshore (<100 m depth) region of the lake and half in the offshore. The mean area-weighted lake-wide density was 395 ± 56 (SE) m-2 in 2006, 756 ± 129 m-2 in 2011, and 502 ± 60 m-2 in 2016. For all years, both density and biomass were greater in the nearshore than in the offshore stratum. The densities for 2006-2016 were 3-5 times higher than those reported from a lake-wide survey conducted in 1973 by the Canada Centre for Inland Waters. The severe declines in Diporeia populations observed in the other Great Lakes during recent decades have apparently not occurred in Lake Superior. Further research is needed to understand spatial and temporal variability of Diporeia populations in Lake Superior to enhance the utility of Diporeia density as an indicator of benthic condition.

4.
Environ Manage ; 55(6): 1446-56, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25832344

RESUMO

Over 400 sites were sampled in the nearshore of the U.S. Great Lakes during the U.S. National Coastal Condition Assessment (NCCA) field survey in summer 2010. Underwater video images were recorded in addition to routine NCCA benthic assessment measures. This paper has two objectives: (1) to develop a process to evaluate video performance with acceptance criteria, exploring reasons for poor images, and (2) to use acceptable videos in an example application with invasive mussels, evaluating the enhancement potential of video to supplement traditional grab sampling. A standard hierarchical protocol was developed to rank video performance based on quality and clarity. We determined controllable and uncontrollable factors affecting video performance. Moreover, specific thresholds limiting video were identified: >0.5/m for light extinction and >3.5 µg/L for chlorophyll a concentration. To demonstrate the utility and enhancement potential of video sampling, observed dreissenid presence from excellent (221 of 362 videos) videos was compared with NCCA benthic taxonomy, in the context of the statistically based NCCA survey. Including video increased the overall area estimate of the U.S. Great Lakes nearshore with invasive mussels by about 15% compared to PONAR alone; 44% (7570 km(2)) of the surveyed region had mussels. The proportion of the nearshore area having mussels varied from low (3.5%) in Lake Superior to >50% in the lower lakes. PONAR and video have unique strengths and weaknesses as sampling tools in the Great Lakes nearshore environment, but when paired were complimentary and thus provided a more thorough benthic condition assessment at lake and regional scales.


Assuntos
Bivalves/crescimento & desenvolvimento , Clorofila/análise , Monitoramento Ambiental/métodos , Lagos/química , Gravação em Vídeo/métodos , Animais , Clorofila A , Great Lakes Region , Projetos de Pesquisa , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...