Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
2.
Pharmaceutics ; 15(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37111695

RESUMO

The efficient and biocompatible transfer of nucleic acids into mammalian cells for research applications or medical purposes is a long-standing, challenging task. Viral transduction is the most efficient transfer system, but often entails high safety levels for research and potential health impairments for patients in medical applications. Lipo- or polyplexes are commonly used transfer systems but result in comparably low transfer efficiencies. Moreover, inflammatory responses caused by cytotoxic side effects were reported for these transfer methods. Often accountable for these effects are various recognition mechanisms for transferred nucleic acids. Using commercially available fusogenic liposomes (Fuse-It-mRNA), we established highly efficient and fully biocompatible transfer of RNA molecules for in vitro as well as in vivo applications. We demonstrated bypassing of endosomal uptake routes and, therefore, of pattern recognition receptors that recognize nucleic acids with high efficiency. This may underlie the observed almost complete abolishment of inflammatory cytokine responses. RNA transfer experiments into zebrafish embryos and adult animals fully confirmed the functional mechanism and the wide range of applications from single cells to organisms.

3.
PLoS One ; 17(11): e0277601, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36445903

RESUMO

In biotechnology, cell growth is one of the most important properties for the characterization and optimization of microbial cultures. Novel live-cell imaging methods are leading to an ever better understanding of cell cultures and their development. The key to analyzing acquired data is accurate and automated cell segmentation at the single-cell level. Therefore, we present microbeSEG, a user-friendly Python-based cell segmentation tool with a graphical user interface and OMERO data management. microbeSEG utilizes a state-of-the-art deep learning-based segmentation method and can be used for instance segmentation of a wide range of cell morphologies and imaging techniques, e.g., phase contrast or fluorescence microscopy. The main focus of microbeSEG is a comprehensible, easy, efficient, and complete workflow from the creation of training data to the final application of the trained segmentation model. We demonstrate that accurate cell segmentation results can be obtained within 45 minutes of user time. Utilizing public segmentation datasets or pre-labeling further accelerates the microbeSEG workflow. This opens the door for accurate and efficient data analysis of microbial cultures.


Assuntos
Gerenciamento de Dados , Aprendizado Profundo , Software , Fluxo de Trabalho , Análise de Dados
4.
Plant Methods ; 16: 89, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582364

RESUMO

BACKGROUND: Root system architecture and especially its plasticity in acclimation to variable environments play a crucial role in the ability of plants to explore and acquire efficiently soil resources and ensure plant productivity. Non-destructive measurement methods are indispensable to quantify dynamic growth traits. For closing the phenotyping gap, we have developed an automated phenotyping platform, GrowScreen-Agar, for non-destructive characterization of root and shoot traits of plants grown in transparent agar medium. RESULTS: The phenotyping system is capable to phenotype root systems and correlate them to whole plant development of up to 280 Arabidopsis plants within 15 min. The potential of the platform has been demonstrated by quantifying phenotypic differences within 78 Arabidopsis accessions from the 1001 genomes project. The chosen concept 'plant-to-sensor' is based on transporting plants to the imaging position, which allows for flexible experimental size and design. As transporting causes mechanical vibrations of plants, we have validated that daily imaging, and consequently, moving plants has negligible influence on plant development. Plants are cultivated in square Petri dishes modified to allow the shoot to grow in the ambient air while the roots grow inside the Petri dish filled with agar. Because it is common practice in the scientific community to grow Arabidopsis plants completely enclosed in Petri dishes, we compared development of plants that had the shoot inside with that of plants that had the shoot outside the plate. Roots of plants grown completely inside the Petri dish grew 58% slower, produced a 1.8 times higher lateral root density and showed an etiolated shoot whereas plants whose shoot grew outside the plate formed a rosette. In addition, the setup with the shoot growing outside the plate offers the unique option to accurately measure both, leaf and root traits, non-destructively, and treat roots and shoots separately. CONCLUSIONS: Because the GrowScreen-Agar system can be moved from one growth chamber to another, plants can be phenotyped under a wide range of environmental conditions including future climate scenarios. In combination with a measurement throughput enabling phenotyping a large set of mutants or accessions, the platform will contribute to the identification of key genes.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32224458

RESUMO

In this contribution we introduce an almost lossless affine 2D image transformation method. To this end we extend the theory of the well-known Chirp-z transform to allow for fully affine transformation of general n-dimensional images. In addition we give a practical spatial and spectral zero-padding approach dramatically reducing losses of our transform, where usual transforms introduce blurring artifacts due to sub-optimal interpolation. The proposed method improves the mean squared error by approx. a factor of 1800 compared to the commonly used linear interpolation, and by a factor of 250 to the best competitor. We derive the transform from basic principles with special attention to implementation details and supplement this paper with python code for 2D images. In demonstration experiments we show the superior image quality compared to usual approaches, when using our method. However runtimes are considerably larger than when using toolbox algorithms.

6.
Trends Plant Sci ; 24(2): 99-102, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30497879

RESUMO

In 2014 plant phenotyping research was not benefiting from the machine learning (ML) revolution because appropriate data were lacking. We report the success of the first open-access dataset suitable for ML in image-based plant phenotyping suitable for machine learning, fuelling a true interdisciplinary symbiosis, increased awareness, and steep performance improvements on key phenotyping tasks.


Assuntos
Aprendizado de Máquina , Simbiose , Fenótipo , Plantas
7.
Plant Methods ; 14: 12, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29449872

RESUMO

BACKGROUND: Image-based plant phenotyping has become a powerful tool in unravelling genotype-environment interactions. The utilization of image analysis and machine learning have become paramount in extracting data stemming from phenotyping experiments. Yet we rely on observer (a human expert) input to perform the phenotyping process. We assume such input to be a 'gold-standard' and use it to evaluate software and algorithms and to train learning-based algorithms. However, we should consider whether any variability among experienced and non-experienced (including plain citizens) observers exists. Here we design a study that measures such variability in an annotation task of an integer-quantifiable phenotype: the leaf count. RESULTS: We compare several experienced and non-experienced observers in annotating leaf counts in images of Arabidopsis Thaliana to measure intra- and inter-observer variability in a controlled study using specially designed annotation tools but also citizens using a distributed citizen-powered web-based platform. In the controlled study observers counted leaves by looking at top-view images, which were taken with low and high resolution optics. We assessed whether the utilization of tools specifically designed for this task can help to reduce such variability. We found that the presence of tools helps to reduce intra-observer variability, and that although intra- and inter-observer variability is present it does not have any effect on longitudinal leaf count trend statistical assessments. We compared the variability of citizen provided annotations (from the web-based platform) and found that plain citizens can provide statistically accurate leaf counts. We also compared a recent machine-learning based leaf counting algorithm and found that while close in performance it is still not within inter-observer variability. CONCLUSIONS: While expertise of the observer plays a role, if sufficient statistical power is present, a collection of non-experienced users and even citizens can be included in image-based phenotyping annotation tasks as long they are suitably designed. We hope with these findings that we can re-evaluate the expectations that we have from automated algorithms: as long as they perform within observer variability they can be considered a suitable alternative. In addition, we hope to invigorate an interest in introducing suitably designed tasks on citizen powered platforms not only to obtain useful information (for research) but to help engage the public in this societal important problem.

8.
Front Plant Sci ; 8: 1680, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29033961

RESUMO

Volume carving is a well established method for visual hull reconstruction and has been successfully applied in plant phenotyping, especially for 3d reconstruction of small plants and seeds. When imaging larger plants at still relatively high spatial resolution (≤1 mm), well known implementations become slow or have prohibitively large memory needs. Here we present and evaluate a computationally efficient algorithm for volume carving, allowing e.g., 3D reconstruction of plant shoots. It combines a well-known multi-grid representation called "Octree" with an efficient image region integration scheme called "Integral image." Speedup with respect to less efficient octree implementations is about 2 orders of magnitude, due to the introduced refinement strategy "Mark and refine." Speedup is about a factor 1.6 compared to a highly optimized GPU implementation using equidistant voxel grids, even without using any parallelization. We demonstrate the application of this method for trait derivation of banana and maize plants.

10.
Plant Physiol ; 172(3): 1358-1370, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27663410

RESUMO

The enormous diversity of seed traits is an intriguing feature and critical for the overwhelming success of higher plants. In particular, seed mass is generally regarded to be key for seedling development but is mostly approximated by using scanning methods delivering only two-dimensional data, often termed seed size. However, three-dimensional traits, such as the volume or mass of single seeds, are very rarely determined in routine measurements. Here, we introduce a device named phenoSeeder, which enables the handling and phenotyping of individual seeds of very different sizes. The system consists of a pick-and-place robot and a modular setup of sensors that can be versatilely extended. Basic biometric traits detected for individual seeds are two-dimensional data from projections, three-dimensional data from volumetric measures, and mass, from which seed density is also calculated. Each seed is tracked by an identifier and, after phenotyping, can be planted, sorted, or individually stored for further evaluation or processing (e.g. in routine seed-to-plant tracking pipelines). By investigating seeds of Arabidopsis (Arabidopsis thaliana), rapeseed (Brassica napus), and barley (Hordeum vulgare), we observed that, even for apparently round-shaped seeds of rapeseed, correlations between the projected area and the mass of seeds were much weaker than between volume and mass. This indicates that simple projections may not deliver good proxies for seed mass. Although throughput is limited, we expect that automated seed phenotyping on a single-seed basis can contribute valuable information for applications in a wide range of wild or crop species, including seed classification, seed sorting, and assessment of seed quality.


Assuntos
Arabidopsis/embriologia , Hordeum/embriologia , Robótica , Sementes/fisiologia , Automação , Ecótipo , Imageamento Tridimensional , Fenótipo , Locos de Características Quantitativas
11.
Front Plant Sci ; 7: 745, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375628

RESUMO

We describe a method for 3D reconstruction of plant seed surfaces, focusing on small seeds with diameters as small as 200 µm. The method considers robotized systems allowing single seed handling in order to rotate a single seed in front of a camera. Even though such systems feature high position repeatability, at sub-millimeter object scales, camera pose variations have to be compensated. We do this by robustly estimating the tool center point from each acquired image. 3D reconstruction can then be performed by a simple shape-from-silhouette approach. In experiments we investigate runtimes, theoretically achievable accuracy, experimentally achieved accuracy, and show as a proof of principle that the proposed method is well sufficient for 3D seed phenotyping purposes.

12.
Artigo em Inglês | MEDLINE | ID: mdl-26684463

RESUMO

Plant growth is a dynamic process, and the precise course of events during early plant development is of major interest for plant research. In this work, we investigate the growth of rosette plants by processing time-lapse videos of growing plants, where we use Nicotiana tabacum (tobacco) as a model plant. In each frame of the video sequences, potential leaves are detected using a leaf-shape model. These detections are prone to errors due to the complex shape of plants and their changing appearance in the image, depending on leaf movement, leaf growth, and illumination conditions. To cope with this problem, we employ a novel graph-based tracking algorithm which can bridge gaps in the sequence by linking leaf detections across a range of neighboring frames. We use the overlap of fitted leaf models as a pairwise similarity measure, and forbid graph edges that would link leaf detections within a single frame. We tested the method on a set of tobacco-plant growth sequences, and could track the first leaves of the plant, including partially or temporarily occluded ones, along complete sequences, demonstrating the applicability of the method to automatic plant growth analysis. All seedlings displayed approximately the same growth behavior, and a characteristic growth signature was found.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Nicotiana/anatomia & histologia , Nicotiana/crescimento & desenvolvimento , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Imagem com Lapso de Tempo/métodos , Algoritmos , Simulação por Computador , Modelos Biológicos
13.
Plant Physiol ; 169(4): 2359-70, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26468519

RESUMO

Precise measurements of leaf vein traits are an important aspect of plant phenotyping for ecological and genetic research. Here, we present a powerful and user-friendly image analysis tool named phenoVein. It is dedicated to automated segmenting and analyzing of leaf veins in images acquired with different imaging modalities (microscope, macrophotography, etc.), including options for comfortable manual correction. Advanced image filtering emphasizes veins from the background and compensates for local brightness inhomogeneities. The most important traits being calculated are total vein length, vein density, piecewise vein lengths and widths, areole area, and skeleton graph statistics, like the number of branching or ending points. For the determination of vein widths, a model-based vein edge estimation approach has been implemented. Validation was performed for the measurement of vein length, vein width, and vein density of Arabidopsis (Arabidopsis thaliana), proving the reliability of phenoVein. We demonstrate the power of phenoVein on a set of previously described vein structure mutants of Arabidopsis (hemivenata, ondulata3, and asymmetric leaves2-101) compared with wild-type accessions Columbia-0 and Landsberg erecta-0. phenoVein is freely available as open-source software.


Assuntos
Arabidopsis/anatomia & histologia , Processamento de Imagem Assistida por Computador/métodos , Feixe Vascular de Plantas/anatomia & histologia , Software , Fenótipo , Folhas de Planta/anatomia & histologia , Reprodutibilidade dos Testes
14.
Plant Methods ; 11: 11, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774205

RESUMO

BACKGROUND: Three-dimensional canopies form complex architectures with temporally and spatially changing leaf orientations. Variations in canopy structure are linked to canopy function and they occur within the scope of genetic variability as well as a reaction to environmental factors like light, water and nutrient supply, and stress. An important key measure to characterize these structural properties is the leaf angle distribution, which in turn requires knowledge on the 3-dimensional single leaf surface. Despite a large number of 3-d sensors and methods only a few systems are applicable for fast and routine measurements in plants and natural canopies. A suitable approach is stereo imaging, which combines depth and color information that allows for easy segmentation of green leaf material and the extraction of plant traits, such as leaf angle distribution. RESULTS: We developed a software package, which provides tools for the quantification of leaf surface properties within natural canopies via 3-d reconstruction from stereo images. Our approach includes a semi-automatic selection process of single leaves and different modes of surface characterization via polygon smoothing or surface model fitting. Based on the resulting surface meshes leaf angle statistics are computed on the whole-leaf level or from local derivations. We include a case study to demonstrate the functionality of our software. 48 images of small sugar beet populations (4 varieties) have been analyzed on the base of their leaf angle distribution in order to investigate seasonal, genotypic and fertilization effects on leaf angle distributions. We could show that leaf angle distributions change during the course of the season with all varieties having a comparable development. Additionally, different varieties had different leaf angle orientation that could be separated in principle component analysis. In contrast nitrogen treatment had no effect on leaf angles. CONCLUSIONS: We show that a stereo imaging setup together with the appropriate image processing tools is capable of retrieving the geometric leaf surface properties of plants and canopies. Our software package provides whole-leaf statistics but also a local estimation of leaf angles, which may have great potential to better understand and quantify structural canopy traits for guided breeding and optimized crop management.

15.
Plant Methods ; 11(1): 1, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25649124

RESUMO

BACKGROUND: Combined assessment of leaf reflectance and transmittance is currently limited to spot (point) measurements. This study introduces a tailor-made hyperspectral absorption-reflectance-transmittance imaging (HyperART) system, yielding a non-invasive determination of both reflectance and transmittance of the whole leaf. We addressed its applicability for analysing plant traits, i.e. assessing Cercospora beticola disease severity or leaf chlorophyll content. To test the accuracy of the obtained data, these were compared with reflectance and transmittance measurements of selected leaves acquired by the point spectroradiometer ASD FieldSpec, equipped with the FluoWat device. RESULTS: The working principle of the HyperART system relies on the upward redirection of transmitted and reflected light (range of 400 to 2500 nm) of a plant sample towards two line scanners. By using both the reflectance and transmittance image, an image of leaf absorption can be calculated. The comparison with the dynamically high-resolution ASD FieldSpec data showed good correlation, underlying the accuracy of the HyperART system. Our experiments showed that variation in both leaf chlorophyll content of four different crop species, due to different fertilization regimes during growth, and fungal symptoms on sugar beet leaves could be accurately estimated and monitored. The use of leaf reflectance and transmittance, as well as their sum (by which the non-absorbed radiation is calculated) obtained by the HyperART system gave considerably improved results in classification of Cercospora leaf spot disease and determination of chlorophyll content. CONCLUSIONS: The HyperART system offers the possibility for non-invasive and accurate mapping of leaf transmittance and absorption, significantly expanding the applicability of reflectance, based on mapping spectroscopy, in plant sciences. Therefore, the HyperART system may be readily employed for non-invasive determination of the spatio-temporal dynamics of various plant properties.

16.
Funct Plant Biol ; 42(10): 971-988, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480737

RESUMO

We are currently witnessing an increasingly higher throughput in image-based plant phenotyping experiments. The majority of imaging data are collected using complex automated procedures and are then post-processed to extract phenotyping-related information. In this article, we show that the image compression used in such procedures may compromise phenotyping results and this needs to be taken into account. We use three illuminating proof-of-concept experiments that demonstrate that compression (especially in the most common lossy JPEG form) affects measurements of plant traits and the errors introduced can be high. We also systematically explore how compression affects measurement fidelity, quantified as effects on image quality, as well as errors in extracted plant visual traits. To do so, we evaluate a variety of image-based phenotyping scenarios, including size and colour of shoots, leaf and root growth. To show that even visual impressions can be used to assess compression effects, we use root system images as examples. Overall, we find that compression has a considerable effect on several types of analyses (albeit visual or quantitative) and that proper care is necessary to ensure that this choice does not affect biological findings. In order to avoid or at least minimise introduced measurement errors, for each scenario, we derive recommendations and provide guidelines on how to identify suitable compression options in practice. We also find that certain compression choices can offer beneficial returns in terms of reducing the amount of data storage without compromising phenotyping results. This may enable even higher throughput experiments in the future.

17.
Funct Plant Biol ; 39(11): 891-904, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32480839

RESUMO

Root systems play an essential role in ensuring plant productivity. Experiments conducted in controlled environments and simulation models suggest that root geometry and responses of root architecture to environmental factors should be studied as a priority. However, compared with aboveground plant organs, roots are not easily accessible by non-invasive analyses and field research is still based almost completely on manual, destructive methods. Contributing to reducing the gap between laboratory and field experiments, we present a novel phenotyping system (GROWSCREEN-Rhizo), which is capable of automatically imaging roots and shoots of plants grown in soil-filled rhizotrons (up to a volume of ~18L) with a throughput of 60 rhizotrons per hour. Analysis of plants grown in this setup is restricted to a certain plant size (up to a shoot height of 80cm and root-system depth of 90cm). We performed validation experiments using six different species and for barley and maize, we studied the effect of moderate soil compaction, which is a relevant factor in the field. First, we found that the portion of root systems that is visible through the rhizotrons' transparent plate is representative of the total root system. The percentage of visible roots decreases with increasing average root diameter of the plant species studied and depends, to some extent, on environmental conditions. Second, we could measure relatively minor changes in root-system architecture induced by a moderate increase in soil compaction. Taken together, these findings demonstrate the good potential of this methodology to characterise root geometry and temporal growth responses with relatively high spatial accuracy and resolution for both monocotyledonous and dicotyledonous species. Our prototype will allow the design of high-throughput screening methodologies simulating environmental scenarios that are relevant in the field and will support breeding efforts towards improved resource use efficiency and stability of crop yields.

18.
Ann Bot ; 107(1): 49-63, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21041230

RESUMO

BACKGROUND AND AIMS: The capacity for fast-growth recovery after de-submergence is important for establishment of riparian species in a water-level-fluctuation zone. Recovery patterns of two wetland plants, Alternanthera philoxeroides and Hemarthria altissima, showing 'escape' and 'quiescence' responses, respectively, during submergence were investigated. METHODS: Leaf and root growth and photosynthesis were monitored continuously during 10 d of recovery following 20 d of complete submergence. Above- and below-ground dry weights, as well as carbohydrate concentrations, were measured several times during the experiment. KEY RESULTS: Both species remobilized stored carbohydrate during submergence. Although enhanced internode elongation depleted the carbohydrate storage in A. philoxeroides during submergence, this species resumed leaf growth 3 d after de-submergence concomitant with restoration of the maximal photosynthetic capacity. In contrast, some sucrose was conserved in shoots of H. altissima during submergence, which promoted rapid re-growth of leaves 2 d after de-submergence and earlier than the full recovery of photosynthesis. The recovery of root growth was delayed by 1-2 d compared with leaves in both species. CONCLUSIONS: Submergence tolerance of the escape and quiescence strategies entails not only the corresponding regulation of growth, carbohydrate catabolism and energy metabolism during submergence but also co-ordinated recovery of photosynthesis, growth and carbohydrate partitioning following de-submergence.


Assuntos
Amaranthaceae/crescimento & desenvolvimento , Amaranthaceae/metabolismo , Poaceae/crescimento & desenvolvimento , Poaceae/metabolismo , Aclimatação , Inundações , Fotossíntese , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Sacarose/metabolismo
19.
IEEE Trans Pattern Anal Mach Intell ; 32(9): 1646-58, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20634558

RESUMO

We extend estimation of range flow to handle brightness changes in image data caused by inhomogeneous illumination. Standard range flow computes 3D velocity fields using both range and intensity image sequences. Toward this end, range flow estimation combines a depth change model with a brightness constancy model. However, local brightness is generally not preserved when object surfaces rotate relative to the camera or the light sources, or when surfaces move in inhomogeneous illumination. We describe and investigate different approaches to handle such brightness changes. A straightforward approach is to prefilter the intensity data such that brightness changes are suppressed, for instance, by a highpass or a homomorphic filter. Such prefiltering may, though, reduce the signal-to-noise ratio. An alternative novel approach is to replace the brightness constancy model by 1) a gradient constancy model, or 2) by a combination of gradient and brightness constancy constraints used earlier successfully for optical flow, or 3) by a physics-based brightness change model. In performance tests, the standard version and the novel versions of range flow estimation are investigated using prefiltered or nonprefiltered synthetic data with available ground truth. Furthermore, the influences of additive Gaussian noise and simulated shot noise are investigated. Finally, we compare all range flow estimators on real data.


Assuntos
Algoritmos , Artefatos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Iluminação/métodos , Reconhecimento Automatizado de Padrão/métodos
20.
Theor Appl Genet ; 120(2): 227-37, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19504257

RESUMO

The main objective of this study was to identify genomic regions involved in biomass heterosis using QTL, generation means, and mode-of-inheritance classification analyses. In a modified North Carolina Design III we backcrossed 429 recombinant inbred line and 140 introgression line populations to the two parental accessions, C24 and Col-0, whose F (1) hybrid exhibited 44% heterosis for biomass. Mid-parent heterosis in the RILs ranged from -31 to 99% for dry weight and from -58 to 143% for leaf area. We detected ten genomic positions involved in biomass heterosis at an early developmental stage, individually explaining between 2.4 and 15.7% of the phenotypic variation. While overdominant gene action was prevalent in heterotic QTL, our results suggest that a combination of dominance, overdominance and epistasis is involved in biomass heterosis in this Arabidopsis cross.


Assuntos
Arabidopsis/genética , Vigor Híbrido , Locos de Características Quantitativas , Arabidopsis/crescimento & desenvolvimento , Biomassa , Genoma de Planta , Endogamia , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...