Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36711625

RESUMO

Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons towards the prefrontal cortex and shape behaviour. We demonstrate in mice ( Mus musculus ) that dopamine axons reach the cortex through a transient gradient of Netrin-1 expressing cells - disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus ) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner - delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

2.
Physiol Behav ; 262: 114093, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706972

RESUMO

Eating and drinking co-occur and many of the same mechanisms that control one are involved in the control of the other, making it difficult to isolate specific mechanisms for the control of fluid intake. Glucagon-like peptide-1 (GLP-1) is a peptide that seems to be involved in the endogenous control of both ingestive behaviors, but we lack a thorough understanding of how and where GLP-1 is acting to control fluid intake. Vasopressin-deficient Brattleboro rats are a model of hereditary hypothalamic diabetes insipidus that have been used extensively for the study of vasopressin actions in behavior and physiology. Here, we propose that these rats, that eat normally but drink excessively, provide a useful model to dissociate central controls of food and fluid intakes. As an initial step toward establishing this model for these purposes, we focused on GLP-1. Similar to the effect observed after treatment with a GLP-1 receptor (GLP-1R) agonist, the intake difference between wildtype and Brattleboro rats was largely a function in the number of licking bursts, indicating differences in post-ingestive feedback (e.g., satiation). When given central injections of a GLP-1R agonist, the effect on feeding was comparable between wildtype and Brattleboro rats, but the effect of drug on fluid intake was markedly exaggerated in Brattleboro rats. Additionally, Brattleboro rats did not respond to GLP-1R antagonism, whereas wildtype rats did. Taken together, these results suggest that Brattleboro rats exhibit a selective disruption to GLP-1's control of water intake. Overall, these experiments provide foundational studies of the ingestive behavior of Brattleboro rats and demonstrate the potential to use these rats to disentangle the effects of GLP-1 on food and fluid intakes.


Assuntos
Comportamento Alimentar , Peptídeo 1 Semelhante ao Glucagon , Ratos , Animais , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Ratos Brattleboro , Comportamento Alimentar/fisiologia , Ingestão de Alimentos/fisiologia , Vasopressinas/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/genética
3.
PLoS One ; 14(8): e0222096, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31469871

RESUMO

Rats are highly social creatures that produce ultrasonic vocalizations (USVs) during social interactions. Brattleboro rats, a Long-Evans derived rat that lacks vasopressin (AVP) due to a mutation in the Avp gene, exhibit atypical social behavior, including fewer USVs with altered spectrotemporal characteristics during social interactions. It is unclear why Brattleboro rats produce atypical USVs, but one factor could be differences in auditory acuity between them and wild-type Long Evans rats with functional vasopressin. Previous studies have suggested a link between increased levels of AVP and auditory processing. Additionally, few studies have investigated sex differences in auditory perception by Long-Evans rats. Sex differences in auditory acuity have been found throughout the animal kingdom, but have not yet been demonstrated in rat audiograms. This study aimed to measure auditory brainstem response (ABR) derived audiograms for frequencies ranging from 1 to 64 kHz in male and female homozygous Brattleboro (Hom), heterozygous Brattleboro (Het), and wild-type (WT) Long-Evans rats to better understand the role of AVP and sex differences in auditory processing by these rats. We failed to detect significant differences between the ABR audiograms of Hom, Het, and WT Long-Evans rats, suggesting that varying levels of AVP do not affect auditory processing. Interestingly, males and females of all genotypes did differ in their ABR thresholds, with males exhibiting higher thresholds than females. The sex differences in auditory acuity were significant at the lowest and highest frequencies, possibly affecting the perception of USVs. These are the first known sex differences in rat audiograms.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico , Ratos Brattleboro , Ratos Long-Evans , Vasopressinas/deficiência , Animais , Biomarcadores , Feminino , Genótipo , Masculino , Ratos , Ratos Transgênicos , Fatores Sexuais , Vasopressinas/genética
4.
Behav Neurosci ; 133(2): 240-246, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30742456

RESUMO

In many species, seasonal changes in photoperiod regulate several behaviors and physiological systems, including reproduction, energy balance, and immune function. MicroRNAs (miRs) regulate numerous physiological processes and developmental transitions through translational repression and mRNA degradation. Their role in seasonal transitions has been vastly understudied, with only a few reports in animals. Furthermore, no study has assessed whether there are sex differences in seasonal regulation of miRs. miR-155 is a primary candidate for seasonal regulation because it influences immune responses, energetics, and reproductive function. In this study, we tested the hypothesis that photoperiod regulates miR-155 gene expression in Siberian hamsters and whether there were sex differences in this photoperiod regulation. miR-155 gene expression levels were measured in hypothalamus, hippocampus, and spleen of male and female Siberian hamsters reared in short days (SDs) or long days (LDs). As expected, SD-reared hamsters had significantly reduced body mass, lightened pelage color, and lower reproductive organ size than LD-reared hamsters. Notably, SDs increased hypothalamic miR-155 gene expression in females but not in males. No differences were observed in hippocampus and spleen of either sex. These findings demonstrate sex-specific photoperiod regulation of miR-155 gene expression. Future studies should consider possible sex differences in miR contributions to seasonal changes in physiology and behavior. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Assuntos
Expressão Gênica , Hipotálamo/metabolismo , MicroRNAs/metabolismo , Phodopus/metabolismo , Fotoperíodo , Caracteres Sexuais , Animais , Peso Corporal , Feminino , Masculino , Tamanho do Órgão , Phodopus/genética , Estações do Ano
5.
Horm Behav ; 106: 1-9, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30184461

RESUMO

Arginine vasopressin (AVP) has recently been implicated in juvenile and adolescent social development. How AVP influences social development, however, is not understood. Adolescent homozygous Brattleboro rats (Hom), which lack AVP due to a mutation in the Avp gene, exhibit fewer active social behaviors (e.g., social play) but more passive social behaviors (e.g., huddling) than their wild type and heterozygous (Het) littermates, raising the possibility that AVP impacts social development through an arousal mechanism. Here, we test whether the atypical social phenotype of adolescent Hom rats is associated with altered behavioral arousal, social approach, or affective behaviors and whether Brattleboro mothers impact these behavioral phenotypes. Male and female Het and Hom adolescents born to Het or Hom mothers were tested in social interaction, open field, novelty-seeking, social approach, and marble burying tests. As reported previously, Hom rats played less and emitted fewer 50 kHz ultrasonic vocalizations while huddling more than their Het littermates. No genotype differences were detected in novelty seeking or social approach, nor were consistent differences found between offspring from Het and Hom mothers. However, Hom rats were less active in the open field and buried fewer marbles than Het rats indicating a hypoaroused, low anxiety phenotype. Open field activity correlated with levels of social play indicating that the effects of the Brattleboro mutation on arousal and social behavior are linked. These data demonstrate that chronic AVP deficiency impacts behavioral arousal during adolescence and support the hypothesis that AVP influences adolescent social development, in part, through its regulation of arousal.


Assuntos
Afeto/fisiologia , Nível de Alerta , Comportamento Animal/fisiologia , Locomoção/fisiologia , Comportamento Social , Vasopressinas/fisiologia , Animais , Nível de Alerta/genética , Comportamento Exploratório/fisiologia , Feminino , Estudos de Associação Genética , Genótipo , Locomoção/genética , Masculino , Ratos , Ratos Brattleboro/genética , Ratos Long-Evans , Maturidade Sexual/genética , Maturidade Sexual/fisiologia
6.
Behav Brain Res ; 261: 323-7, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24406726

RESUMO

Given that human adolescents place a high value on social interactions-particularly while consuming alcohol-the current study utilized a novel social drinking paradigm to examine rewarding and aversive properties of ethanol in non-water deprived rats that were housed and tested in groups of five same-sex littermates. On postnatal day P34 (adolescents) or P69 (adults), rats were habituated to the testing apparatus for 30 min. On the next day, animals were placed into the test apparatus and given 30 min access to a supersaccharin solution (3% sucrose; 0.125% saccharin), followed immediately by an intraperitoneal injection of ethanol (0, 0.25, 0.5, 1.0, 1.5 g/kg). Subsequent intake of the supersacharrin solution was assessed on three consecutive test days. Adolescent males were less sensitive to ethanol's aversive effects than adult males, with adolescent males maintaining an aversion on all three test days only at the 1.5 g/kg dose, whereas adults demonstrated aversions across test days to 1 and 1.5 g/kg. Adolescent females maintained aversions to 1 and 1.5 g/kg across days, whereas adult females continued to show an aversion to the 1.5 g/kg dose only. These opposite patterns of sensitivity that emerged among males and females at each age in the propensity to maintain an ethanol-induced taste aversion under social conditions may contribute to age- and sex-related differences in ethanol intake. Testing in social groups may be useful for future work when studying rodent models of adolescent alcohol use given the importance that human adolescents place on drinking in social settings.


Assuntos
Envelhecimento/fisiologia , Depressores do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Etanol/farmacologia , Relações Interpessoais , Caracteres Sexuais , Paladar/efeitos dos fármacos , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Ingestão de Alimentos/efeitos dos fármacos , Feminino , Masculino , Ratos , Sacarina/administração & dosagem , Edulcorantes/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...