Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycad005, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282644

RESUMO

Hadal sediments are hotspots of microbial activity in the deep sea and exhibit strong biogeochemical gradients. But although these gradients are widely assumed to exert selective forces on hadal microbial communities, the actual relationship between biogeochemistry, functional traits, and microbial community structure remains poorly understood. We tested whether the biogeochemical conditions in hadal sediments select for microbes based on their genomic capacity for respiration and carbohydrate utilization via a metagenomic analysis of over 153 samples from the Atacama Trench region (max. depth = 8085 m). The obtained 1357 non-redundant microbial genomes were affiliated with about one-third of all known microbial phyla, with more than half belonging to unknown genera. This indicated that the capability to withstand extreme hydrostatic pressure is a phylogenetically widespread trait and that hadal sediments are inhabited by diverse microbial lineages. Although community composition changed gradually over sediment depth, these changes were not driven by selection for respiratory or carbohydrate degradation capability in the oxic and nitrogenous zones, except in the case of anammox bacteria and nitrifying archaea. However, selection based on respiration and carbohydrate degradation capacity did structure the communities of the ferruginous zone, where aerobic and nitrogen respiring microbes declined exponentially (half-life = 125-419 years) and were replaced by subsurface communities. These results highlight a delayed response of microbial community composition to selective pressure imposed by redox zonation and indicated that gradual changes in microbial composition are shaped by the high-resilience and slow growth of microbes in the seafloor.

2.
ISME Commun ; 3(1): 133, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38135695

RESUMO

Ammonia-oxidizing archaea of the phylum Thaumarchaeota play a central role in the biogeochemical cycling of nitrogen in benthic sediments, at the interface between pelagic and subsurface ecosystems. However, our understanding of their niche separation and of the processes controlling their population structure in hadal and abyssal surface sediments is still limited. Here, we reconstructed 47 AOA metagenome-assembled genomes (MAGs) from surface sediments of the Atacama and Kermadec trench systems. They formed deep-sea-specific groups within the family Nitrosopumilaceae and were assigned to six amoA gene-based clades. MAGs from different clades had distinct distribution patterns along oxygen-ammonium counter gradients in surface sediments. At the species level, MAGs thus seemed to form different ecotypes and follow deterministic niche-based distributions. In contrast, intraspecific population structure, defined by patterns of Single Nucleotide Variants (SNV), seemed to reflect more complex contributions of both deterministic and stochastic processes. Firstly, the bathymetric range had a strong effect on population structure, with distinct populations in abyssal plains and hadal trenches. Then, hadal populations were clearly separated by trench system, suggesting a strong isolation-by-topography effect, whereas abyssal populations were rather controlled by sediment depth or geographic distances, depending on the clade considered. Interestingly, genetic variability between samples was lowest in sediment layers where the mean MAG coverage was highest, highlighting the importance of selective pressure linked with each AOA clade's ecological niche. Overall, our results show that deep-sea AOA genome distributions seem to follow both deterministic and stochastic processes, depending on the genomic variability scale considered.

3.
Environ Microbiol ; 25(9): 1594-1604, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36999247

RESUMO

Microbial communities in marine sediments are highly diverse, yet the processes that give rise to this complexity are unclear. It has been proposed that benthic microbial communities must be continuously re-seeded from the water column because dispersal within the sediment is severely limited. Previous studies consistently report that the composition of the microbial community gradually changes with sediment depth. However, the relative contributions of the processes that underlie these compositional gradients have not been determined, and it is unknown whether microbial dispersal is indeed too slow to outpace burial. Here, we applied ecological statistical frameworks to 16S rRNA gene amplicon-based community composition data from Atacama Trench sediments to investigate the links between biogeochemistry, burial, and microbial community assembly processes. We confirm that dispersal limitation affects microbial communities and find that gradual changes in community composition are driven by selective pressures that change abruptly across the discrete boundaries between redox zones rather than along continuous biogeochemical gradients, while selective pressures are uniform within each zone. The gradual changes in community composition over centimetres of depth within a zone hence reflects a decades-long response to the abruptly changing selective pressures.


Assuntos
Bactérias , Microbiota , Bactérias/genética , Sedimentos Geológicos/química , RNA Ribossômico 16S/genética , Filogenia , Microbiota/genética , Oxirredução
4.
Limnol Oceanogr ; 67(6): 1257-1273, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36248250

RESUMO

Shallow coastal waters are dynamic environments that dominate global marine methane emissions. Particularly high methane concentrations are found in seasonally anoxic waters, which are spreading in eutrophic coastal systems, potentially leading to increased methane emissions to the atmosphere. Here we explore how the seasonal development of anoxia influenced methane concentrations, rates of methane oxidation, and the community composition of methanotrophs in the shallow eutrophic water column of Mariager Fjord, Denmark. Our results show the development of steep concentration gradients toward the oxic-anoxic interface as methane accumulated to 1.4 µM in anoxic bottom waters. Yet, the fjord possessed an efficient microbial methane filter near the oxic-anoxic interface that responded to the increasing methane flux. In experimental incubations, methane oxidation near the oxic-anoxic interface proceeded both aerobically and anaerobically with nearly equal efficiency reaching turnover rates as high as 0.6 and 0.8 d-1, respectively, and was seemingly mediated by members of the Methylococcales belonging to the Deep Sea-1 clade. Throughout the period, both aerobic and anaerobic methane oxidation rates were high enough to consume the estimated methane flux. Thus, our results indicate that seasonal anoxia did not increase methane emissions.

5.
Environ Microbiol ; 24(5): 2361-2379, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415879

RESUMO

Coastal waters are a major source of marine methane to the atmosphere. Particularly high concentrations of this potent greenhouse gas are found in anoxic waters, but it remains unclear if and to what extent anaerobic methanotrophs mitigate the methane flux. Here we investigate the long-term dynamics in methanotrophic activity and the methanotroph community in the coastal oxygen minimum zone (OMZ) of Golfo Dulce, Costa Rica, combining biogeochemical analyses, experimental incubations and 16S rRNA gene sequencing over 3 consecutive years. Our results demonstrate a stable redox zonation across the years with high concentrations of methane (up to 1.7 µmol L-1 ) in anoxic bottom waters. However, we also measured high activities of anaerobic methane oxidation in the OMZ core (rate constant, k, averaging 30 yr-1 in 2018 and 8 yr-1 in 2019-2020). The OPU3 and Deep Sea-1 clades of the Methylococcales were implicated as conveyors of the activity, peaking in relative abundance 5-25 m below the oxic-anoxic interface and in the deep anoxic water respectively. Although their genetic capacity for anaerobic methane oxidation remains unexplored, their sustained high relative abundance indicates an adaptation of these clades to the anoxic, methane-rich OMZ environment, allowing them to play major roles in mitigating methane fluxes.


Assuntos
Metano , Oxigênio , Anaerobiose , Oxirredução , RNA Ribossômico 16S/genética
6.
mSystems ; 7(3): e0016322, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35473303

RESUMO

The initial contact between humans and their colonizing gut microbiota after birth is thought to have expansive and long-lasting consequences for physiology and health. Premature infants are at high risk of suffering from lifelong impairments, due in part to aberrant development of gut microbiota that can contribute to early-life infections and inflammation. Despite their importance to health, the ecological assembly and succession processes governing gut microbiome composition in premature infants remained incompletely understood. Here, we quantified these ecological processes in a spatiotemporally resolved 16S rRNA gene amplicon sequencing data set of 60 extremely premature neonates using an established mathematical framework. We found that gut colonization during the first months of life is predominantly stochastic, whereby interindividual diversification of microbiota is driven by ecological drift. Dispersal limitations are initially small but have increasing influence at later stages of succession. Furthermore, we find similar trends in a cohort of 32 healthy term-born infants. These results suggest that the uniqueness of individual gut microbiota of extremely premature infants is largely due to stochastic assembly. IMPORTANCE Our knowledge concerning the initial gut microbiome assembly in human neonates is limited, and scientific progression in this interdisciplinary field is hindered due to the individuality in composition of gut microbiota. Our study addresses the ecological processes that result in the observed individuality of microbes in the gastrointestinal tract between extremely premature and term-born infants. We find that initial assembly is mainly driven by neutral ecological processes. Interestingly, while this progression is predominantly random, limitations to the dispersal of microbiota between infants become increasingly important with age and are concomitant features of gut microbiome stability. This indicates that while we cannot predict gut microbiota assembly due to its random nature, we can expect the establishment of certain ecological features that are highly relevant for neonatal health.


Assuntos
Microbioma Gastrointestinal , Recém-Nascido , Lactente , Feminino , Humanos , Microbioma Gastrointestinal/genética , Lactente Extremamente Prematuro , RNA Ribossômico 16S/genética , Individualidade , Fezes
7.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34764222

RESUMO

Benthic N2 production by microbial denitrification and anammox is the largest sink for fixed nitrogen in the oceans. Most N2 production occurs on the continental shelves, where a high flux of reactive organic matter fuels the depletion of nitrate close to the sediment surface. By contrast, N2 production rates in abyssal sediments are low due to low inputs of reactive organics, and nitrogen transformations are dominated by aerobic nitrification and the release of nitrate to the bottom water. Here, we demonstrate that this trend is reversed in the deepest parts of the oceans, the hadal trenches, where focusing of reactive organic matter enhances benthic microbial activity. Thus, at ∼8-km depth in the Atacama Trench, underlying productive surface waters, nitrate is depleted within a few centimeters of the sediment surface, N2 production rates reach those reported from some continental margin sites, and fixed nitrogen loss is mainly conveyed by anammox bacteria. These bacteria are closely related to those known from shallow oxygen minimum zone waters, and comparison of activities measured in the laboratory and in situ suggest they are piezotolerant. Even the Kermadec Trench, underlying oligotrophic surface waters, exhibits substantial fixed N removal. Our results underline the role of hadal sediments as hot spots of deep-sea biological activity, revealing a fully functional benthic nitrogen cycle at high hydrostatic pressure and pointing to hadal sediments as a previously unexplored niche for anaerobic microbial ecology and diagenesis.


Assuntos
Sedimentos Geológicos/microbiologia , Fixação de Nitrogênio/fisiologia , Bactérias Fixadoras de Nitrogênio/metabolismo , Nitrogênio/metabolismo , Oxidação Anaeróbia da Amônia/fisiologia , Desnitrificação/fisiologia , Microbiota/fisiologia , Nitratos/metabolismo , Nitrificação/fisiologia , Ciclo do Nitrogênio/fisiologia , Oceanos e Mares
8.
Limnol Oceanogr ; 66(6): 2095-2109, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34239169

RESUMO

Hadal trenches represent the deepest part of the ocean and are dynamic depocenters with intensified prokaryotic activity. Here, we explored the distribution and drivers of prokaryotic and viral abundance from the ocean surface and 40 cm into sediments in two hadal trench regions with contrasting surface productivity. In the water column, prokaryotic and viral abundance decreased with water depth before reaching a rather stable level at ~ 4000 m depth at both trench systems, while virus to prokaryote ratios were increasing with depth, presumably reflecting the declining availability of organic material. Prokaryotic and viral abundances in sediments were lower at the adjacent abyssal sites than at the hadal sites and declined exponentially with sediment depth, closely tracking the attenuation of total organic carbon (TOC) content. In contrast, hadal sediment exhibited erratic depth profiles of prokaryotes and viruses with many subsurface peaks. The prokaryotic abundance correlated well to extensive fluctuations in TOC content at centimeter scale, which were likely caused by recurring mass wasting events. Yet while prokaryotic and viral abundances cross correlated well in the abyssal sediments, there was no clear correlation in the hadal sites. The results suggested that dynamic depositional conditions and higher substrate availability result in a high spatial heterogeneity in viral and prokaryotic abundances in hadal sediments in comparison to more stable abyssal settings. We argue that these conditions enhance the relatively importance of viruses for prokaryotic mortality and carbon recycling in hadal settings.

9.
ISME J ; 15(12): 3455-3467, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34103697

RESUMO

Hadal trench sediments are hotspots of biogeochemical activity in the deep sea, but the biogeochemical and ecological factors that shape benthic hadal microbial communities remain unknown. Here, we sampled ten hadal sites from two trench regions with a vertical resolution of down to 1 cm. We sequenced 16S rRNA gene amplicons using universal and archaea-specific primer sets and compared the results to biogeochemical parameters. Despite bathymetric and depositional heterogeneity we found a high similarity of microbial communities within each of the two trench axes, while composition at the phylum level varied strongly with sediment depth in conjunction with the redox stratification into oxic, nitrogenous, and ferruginous zones. As a result, communities of a given sediment horizon were more similar to each other across a distance of hundreds of kilometers within each trench, than to those of adjacent horizons from the same sites separated only by centimeters. Total organic carbon content statistically only explained a small part of the variation within and between trenches, and did not explain the community differences observed between the hadal and adjacent shallower sites. Anaerobic taxa increased in abundance at the top of the ferruginous zone, seeded by organisms deposited at the sediment surface and surviving burial through the upper redox zones. While an influence of other potential factors such as geographic isolation, hydrostatic pressure, and non-steady state depositional regimes could not be discerned, redox stratification and diagenesis appear to be the main selective forces that structure community composition in hadal sediments.


Assuntos
Bactérias , Microbiota , Archaea/genética , Bactérias/genética , Oxirredução , RNA Ribossômico 16S/genética
10.
Front Microbiol ; 8: 1508, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824606

RESUMO

Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be catalyzed by the concerted activity of ammonia- and nitrite-oxidizing microorganisms. Only recently, complete ammonia oxidizers ("comammox"), which oxidize ammonia to nitrate on their own, were identified in the bacterial genus Nitrospira, previously assumed to contain only canonical nitrite oxidizers. Nitrospira are widespread in nature, but for assessments of the distribution and functional importance of comammox Nitrospira in ecosystems, cultivation-independent tools to distinguish comammox from strictly nitrite-oxidizing Nitrospira are required. Here we developed new PCR primer sets that specifically target the amoA genes coding for subunit A of the distinct ammonia monooxygenase of comammox Nitrospira. While existing primers capture only a fraction of the known comammox amoA diversity, the new primer sets cover as much as 95% of the comammox amoA clade A and 92% of the clade B sequences in a reference database containing 326 comammox amoA genes with sequence information at the primer binding sites. Application of the primers to 13 samples from engineered systems (a groundwater well, drinking water treatment and wastewater treatment plants) and other habitats (rice paddy and forest soils, rice rhizosphere, brackish lake sediment and freshwater biofilm) detected comammox Nitrospira in all samples and revealed a considerable diversity of comammox in most habitats. Excellent primer specificity for comammox amoA was achieved by avoiding the use of highly degenerate primer preparations and by using equimolar mixtures of oligonucleotides that match existing comammox amoA genes. Quantitative PCR with these equimolar primer mixtures was highly sensitive and specific, and enabled the efficient quantification of clade A and clade B comammox amoA gene copy numbers in environmental samples. The measured relative abundances of comammox Nitrospira, compared to canonical ammonia oxidizers, were highly variable across environments. The new comammox amoA-targeted primers enable more encompassing future studies of nitrifying microorganisms in diverse habitats. For example, they may be used to monitor the population dynamics of uncultured comammox organisms under changing environmental conditions and in response to altered treatments in engineered and agricultural ecosystems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...