Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0303504, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38739606

RESUMO

Biodiversity is in rapid decline globally with agriculture being one of the leading causes. Within agricultural landscapes, some features provide a benefit to biodiversity that is disproportionate to their spatial area. An interesting example is artificial ponds-or farm dams-which can support a large variety of taxa. Here, we present a global review of farm dam research related to biodiversity conservation objectives to provide an overview of the topics, key research insights, and the characteristics of current research. We used a three-stage process to screen literature and identified 104 relevant papers across 27 countries encompassing studies of 13 different taxa. Most of the studies were short-term (less than 5 years) with small sample sizes (less than 20 sites). Of the 104 papers, 88 were focussed primarily on ecological outcomes, such as species richness or abundance, and 15 on primary production outcomes, such as crop and livestock yield, despite addressing or measuring ecological metrics. Only one study measured both ecological and primary production outcomes. Studies frequently examined how the features of dams (79 studies) and attributes of the surrounding landscape (47 studies) impact particular species and communities. Terrestrial mammals (1 study) were under-represented in the literature with macrophytes (28 studies), macroinvertebrates (26 studies), and amphibians (19 studies) receiving the most attention. Our results reveal a growing trend towards recognizing farm dams as habitats for various taxa, including amphibians, beetles, dragonflies, and other macroinvertebrates within agricultural environments. Significant knowledge gaps exist in understanding how dam age, invasive species, and effective management practices impact the biodiversity conservation values of farm dams. Future research should emphasize enhancing biodiversity by collaborating with landholders to increase habitat through strategic vegetation planning, minimizing runoff and nutrient inflow, and restricting stock access.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Conservação dos Recursos Naturais/métodos , Animais , Fazendas , Agricultura/métodos , Ecossistema
2.
Conserv Biol ; : e14277, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38660923

RESUMO

Globally, species are increasingly at risk from compounding threatening processes, an increasingly prominent driver of which is environmental disturbances. To facilitate effective conservation efforts following such events, methods that evaluate potential impacts across multiple species and provide landscape-scale information are needed to guide targeted responses. Often, the geographic overlap between a disturbance and species' distribution is calculated and then used as a proxy for potential impact. However, such methods do not account for the important influence of environmental heterogeneity throughout species' ranges. To address this shortcoming, we quantified the effects of environmental disturbances on species' environmental niche space. Using the Australian 2019 and 2020 Black Summer fires as a case study, we applied a niche-centric approach to examine the potential impacts of these fires on 387 vertebrate species. We examined the utility of established and novel niche metrics to assess the potential impacts of large-scale disturbance events on species by comparing the potential effects of the fires as determined by our various niche measures to those derived from geographic-based measures of impact. We examined the quality of environmental space affected by the disturbance by quantifying the position in niche space where the disturbance occurred (center or margin), the uniqueness of the environmental space that was burned, and the degree to which the remaining, unburned portion of the niche differed from a species' original prefire niche. There was limited congruence between the proportion of geographic and niche space affected, which showed that geographic-based approaches in isolation may have underestimated the impact of the fires for 56% of modeled species. For each species, when combined, these metrics provided a greater indication of postdisturbance recovery potential than geographic-based measures alone. Accordingly, the integration of niche-based analyses into conservation assessments following large-scale disturbance events will lead to a more nuanced understanding of potential impacts and guide more informed and effective conservation actions.


Estrategia basada en los nichos para explorar el impacto de la perturbación ambiental sobre la biodiversidad Resumen En todo el mundo, las especies corren un riesgo cada vez mayor de verse amenazadas por procesos combinados, entre los que destacan las perturbaciones ambientales. Para facilitar una labor de conservación eficaz después de estos fenómenos, se necesitan métodos que evalúen el impacto potencial en varias especies y proporcionen información a escala de paisaje para orientar las respuestas específicas. A menudo, se calcula el traslape geográfico entre una perturbación y la distribución de las especies y se utiliza como indicador del impacto potencial. Sin embargo, estos métodos no tienen en cuenta la influencia importante de la heterogeneidad ambiental en toda el área de distribución de las especies. Para abordar esta deficiencia, cuantificamos los efectos de las perturbaciones ambientales en el espacio del nicho ambiental de las especies. Usamos los incendios australianos de Black Summer de 2019 y 2020 como caso de estudio y aplicamos un enfoque centrado en el nicho para examinar los impactos potenciales de estos incendios en 387 especies de vertebrados. Analizamos la utilidad de las métricas nuevas y establecidas de nicho para evaluar los impactos potenciales de los eventos de perturbación a gran escala para las especies con la comparación de los efectos potenciales de los incendios determinados por nuestras diversas medidas de nicho con los derivados de las medidas de impacto basadas en la geografía. Examinamos la calidad del espacio ambiental afectado por la perturbación al cuantificar la posición en el espacio del nicho donde se produjo la perturbación (centro o margen), la singularidad del espacio ambiental que se quemó y el grado en que la parte restante no quemada del nicho difería del nicho original de una especie antes del incendio. Hubo una congruencia limitada entre la proporción del espacio geográfico y del nicho afectado, lo que demostró que los enfoques geográficos aislados pueden subestimar el impacto de los incendios para el 56% de las especies modeladas. Para cada especie, estas métricas combinadas proporcionaron una mayor indicación del potencial de recuperación tras las perturbaciones que las medidas geográficas por sí solas. Por lo tanto, la integración de los análisis basados en nichos en las evaluaciones de conservación tras perturbaciones a gran escala permitirá comprender mejor los impactos potenciales y orientar las acciones de conservación de manera más informada y eficaz.

3.
PLoS One ; 18(9): e0291641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37768982

RESUMO

Reptiles are an important part of the vertebrate fauna in the temperate woodlands of south-eastern Australia. However, compared to birds and mammals, the long-term occurrence of reptiles across woodland growth types-old growth, regrowth, and replantings-remains poorly understood. Here, using 18-years of data gathered at 218 sites across 1.5 million hectares in New South Wales South West Slopes bioregion, we sought to quantify patterns of temporal change in reptile occurrence and determine if such changes varied between woodland growth types. Despite extensive sampling, almost 75% of our 6341 surveys produced no detections of reptiles. Significant survey effort exceeding 2000 surveys was needed over a prolonged period of time to record detections of 26 reptile species in our study area. Our analyses showed a temporal increase in estimated reptile species richness and abundance over 18 years. Such increases characterized all three vegetation structural types we surveyed. At the individual species level, we had sufficient data to construct models for five of the 26 species recorded. Three of these species were least commonly detected in replantings, whereas the remaining two were most often detected in replantings relative to old growth and regrowth woodland. We found evidence of a temporal increase in two skink species, a decline in one gecko species, and no change in the remaining two skink species. Although detections were consistently low, active searches were the best survey method, and we suggest using this method in habitats known to be hotspots for reptiles, such as rocky outcrops, if the aim is to maximize the number of individuals and species detected. Our findings highlight the value of all three broad vegetation structure types in contributing to woodland reptile biodiversity.


Assuntos
Florestas , Lagartos , Humanos , Animais , Ecossistema , Répteis , Biodiversidade , New South Wales , Conservação dos Recursos Naturais/métodos , Mamíferos
4.
Nat Ecol Evol ; 7(10): 1682-1692, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37550511

RESUMO

Global change is causing an unprecedented restructuring of ecosystems, with the spread of invasive species being a key driver. While population declines of native species due to invasives are well documented, much less is known about whether new biotic interactions reshape niches of native species. Here we quantify geographic range and realized-niche contractions in Australian frog species following the introduction of amphibian chytrid fungus Batrachochytrium dendrobatidis, a pathogen responsible for catastrophic amphibian declines worldwide. We show that chytrid-impacted species experienced proportionately greater contractions in niche breadth than geographic distribution following chytrid emergence. Furthermore, niche contractions were directional, with contemporary distributions of chytrid-impacted species characterized by higher temperatures, lower diurnal temperature range, higher precipitation and lower elevations. Areas with these conditions may enable host persistence with chytrid through lower pathogenicity of the fungus and/or greater demographic resilience. Nevertheless, contraction to a narrower subset of environmental conditions could increase host vulnerability to other threatening processes and should be considered in assessments of extinction risk and during conservation planning. More broadly, our results emphasize that biotic interactions can strongly shape species realized niches and that large-scale niche contractions due to new species interactions-particularly emerging pathogens-could be widespread.


Assuntos
Quitridiomicetos , Micoses , Animais , Ecossistema , Micoses/veterinária , Micoses/epidemiologia , Micoses/microbiologia , Austrália , Anuros
5.
Ecol Evol ; 13(5): e10069, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37214614

RESUMO

Deepening droughts and unprecedented wildfires are at the leading edge of climate change. Such events pose an emerging threat to species maladapted to these perturbations, with the potential for steeper declines than may be inferred from the gradual erosion of their climatic niche. This study focused on two species of amphibians-Philoria kundagungan and Philoria richmondensis (Limnodynastidae)-from the Gondwanan rainforests of eastern Australia that were extensively affected by the "Black Summer" megafires of 2019/2020 and the severe drought associated with them. We sought to assess the impact of these perturbations by quantifying the extent of habitat affected by fire, assessing patterns of occurrence and abundance of calling males post-fire, and comparing post-fire occurrence and abundance with that observed pre-fire. Some 30% of potentially suitable habitat for P. kundagungan was fire affected, and 12% for P. richmondensis. Field surveys revealed persistence in some burnt rainforest; however, both species were detected at a higher proportion of unburnt sites. There was a clear negative effect of fire on the probability of site occupancy, abundance and the probability of persistence for P. kundagungan. For P. richmondensis, effects of fire were less evident due to the limited penetration of fire into core habitat; however, occupancy rates and abundance of calling males were depressed during the severe drought that prevailed just prior to the fires, with the reappearance of calling males linked to the degree of rehydration of breeding habitat post-fire. Our results highlight the possibility that severe negative impacts of climate change for montane rainforest endemics may be felt much sooner than commonly anticipated under a scenario of gradual (decadal-scale) changes in mean climatic conditions. Instead, the increased rate of severe stochastic events places these narrow range species at a heightened risk of extinction in the near-term.

6.
Sci Rep ; 12(1): 12055, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835789

RESUMO

Understanding the responses of rare species to altered fire disturbance regimes is an ongoing challenge for ecologists. We asked: are there associations between fire regimes and plant rarity across different vegetation communities? We combined 62 years of fire history records with vegetation surveys of 86 sites across three different dry sclerophyll vegetation communities in Booderee National Park, south-east Australia to: (1) compare associations between species richness and rare species richness with fire regimes, (2) test whether fire regimes influence the proportion of rare species present in an assemblage, and (3) examine whether rare species are associated with particular fire response traits and life history. We also sought to determine if different rarity categorisations influence the associations between fire regimes and plant rarity. We categorised plant rarity using three standard definitions; species' abundance, species' distribution, and Rabinowitz's measure of rarity, which considers a species' abundance, distribution and habitat specificity. We found that total species richness was negatively associated with short fire intervals but positively associated with time since fire and fire frequency in woodland communities. Total species richness was also positively associated with short fire intervals in forest communities. However, rare species richness was not associated with fire when categorised via abundance or distribution. Using Rabinowitz's measure of rarity, the proportion of rare species present was negatively associated with fire frequency in forest communities but positively associated with fire frequency in woodland communities. We found that rare species classified by all three measures of rarity exhibited no difference in fire response traits and serotiny compared to species not classified as rare. Rare species based on abundance differed to species not classified as rare across each life history category, while species rare by distribution differed in preferences for seed storage location. Our findings suggest that species categorised as rare by Rabinowitz's definition of rarity are the most sensitive to the effects of fire regimes. Nevertheless, the paucity of responses observed between rare species with fire regimes in a fire-prone ecosystem suggests that other biotic drivers may play a greater role in influencing the rarity of a species in this system.


Assuntos
Ecossistema , Incêndios , Biodiversidade , Florestas , Plantas
7.
Glob Chang Biol ; 28(15): 4701-4712, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35562855

RESUMO

Agricultural practices have created tens of millions of small artificial water bodies ("farm dams" or "agricultural ponds") to provide water for domestic livestock worldwide. Among freshwater ecosystems, farm dams have some of the highest greenhouse gas (GHG) emissions per m2 due to fertilizer and manure run-off boosting methane production-an extremely potent GHG. However, management strategies to mitigate the substantial emissions from millions of farm dams remain unexplored. We tested the hypothesis that installing fences to exclude livestock could reduce nutrients, improve water quality, and lower aquatic GHG emissions. We established a large-scale experiment spanning 400 km across south-eastern Australia where we compared unfenced (N = 33) and fenced farm dams (N = 31) within 17 livestock farms. Fenced farm dams recorded 32% less dissolved nitrogen, 39% less dissolved phosphorus, 22% more dissolved oxygen, and produced 56% less diffusive methane emissions than unfenced dams. We found no effect of farm dam management on diffusive carbon dioxide emissions and on the organic carbon in the soil. Dissolved oxygen was the most important variable explaining changes in carbon fluxes across dams, whereby doubling dissolved oxygen from 5 to 10 mg L-1 led to a 74% decrease in methane fluxes, a 124% decrease in carbon dioxide fluxes, and a 96% decrease in CO2 -eq (CH4 + CO2 ) fluxes. Dams with very high dissolved oxygen (>10 mg L-1 ) showed a switch from positive to negative CO2 -eq. (CO2 + CH4 ) fluxes (i.e., negative radiative balance), indicating a positive contribution to reduce atmospheric warming. Our results demonstrate that simple management actions can dramatically improve water quality and decrease methane emissions while contributing to more productive and sustainable farming.


Assuntos
Gases de Efeito Estufa , Metano , Animais , Dióxido de Carbono/análise , Ecossistema , Fazendas , Gases de Efeito Estufa/análise , Gado , Metano/análise , Óxido Nitroso/análise , Oxigênio , Qualidade da Água
8.
Ecol Evol ; 12(3): e8636, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35342565

RESUMO

In many farming landscapes, aquatic features, such as wetlands, creeks, and dams, provide water for stock and irrigation, while also acting as habitat for a range of plants and animals. Indeed, some species threatened by land-use change may otherwise be considerably rarer-or even suffer extinction-in the absence of these habitats. Therefore, a critical issue for the maintenance of biodiversity in agricultural landscapes is the extent to which the management of aquatic systems can promote the integration of agricultural production and biodiversity conservation. We completed a cross-sectional study in southern New South Wales (southeastern Australia) to quantify the efficacy of two concurrently implemented management practices-partial revegetation and control of livestock grazing-aimed at enhancing the vegetation structure, biodiversity value, and water quality of farm dams. We found that excluding livestock for even short periods resulted in increased vegetation cover. Relative to unenhanced dams (such as those that remained unfenced), those that had been enhanced for several years were characterized by reduced levels of turbidity, nutrients, and fecal contamination. Enhanced dams also supported increased richness and abundance of macroinvertebrates. In contrast, unenhanced control dams tended to have high abundance of a few macroinvertebrate taxa. Notably, differences remained between the macroinvertebrate assemblages of enhanced dams and nearby "natural" waterbodies that we monitored as reference sites. While the biodiversity value of semilotic, natural waterbodies in the region cannot be replicated by artificial lentic systems, we consider the extensive system of farm dams in the region to represent a novel ecosystem that may nonetheless support some native macroinvertebrates. Our results show that management interventions such as fencing and grazing control can improve water quality in farm dams, improve vegetation structure around farm dams, and support greater abundance and diversity of aquatic macroinvertebrates.

9.
PLoS One ; 16(12): e0260215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34928957

RESUMO

Determining the drivers of plant rarity is a major challenge in ecology. Analysing spatial associations between different plant species can provide an exploratory avenue for understanding the ecological drivers of plant rarity. Here, we examined the different types of spatial associations between rare and common plants to determine if they influence the occurrence patterns of rare species. We completed vegetation surveys at 86 sites in woodland, forest, and heath communities in south-east Australia. We also examined two different rarity measures to quantify how categorisation criteria affected our results. Rare species were more likely to have positive associations with both rare and common species across all three vegetation communities. However, common species had positive or negative associations with rare and other common species, depending on the vegetation community in which they occurred. Rare species were positively associated with species diversity in forest communities. In woodland communities, rare species were associated negatively with species diversity but positively associated with species evenness. Rare species with high habitat specificity were more clustered spatially than expected by chance. Efforts to understand the drivers of plant rarity should use rarity definitions that consider habitat specificity. Our findings suggest that examining spatial associations between plants can help understand the drivers of plant rarity.


Assuntos
Plantas/classificação , Austrália , Biodiversidade , Análise por Conglomerados , Florestas , Desenvolvimento Vegetal/fisiologia , Análise Espacial
10.
J Fungi (Basel) ; 7(8)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34436183

RESUMO

The recent introduction of the chytrid fungus Batrachochytrium salamandrivorans into northeastern Spain threatens salamander diversity on the Iberian Peninsula. We assessed the current epidemiological situation with extensive field sampling of urodele populations. We then sought to delineate priority regions and identify conservation units for the Iberian Peninsula by estimating the susceptibility of Iberian urodeles using laboratory experiments, evidence from mortality events in nature and captivity and inference from phylogeny. None of the 1395 field samples, collected between 2015 and 2021 were positive for Bsal and no Bsal-associated mortality events were recorded, in contrast to the confirmed occurrence of Bsal outbreak previously described in 2018. We classified five of eleven Iberian urodele species as highly susceptible, predicting elevated mortality and population declines following potential Bsal emergence in the wild, five species as intermediately susceptible with variable disease outcomes and one species as resistant to disease and mortality. We identified the six conservation units (i.e., species or lineages within species) at highest risk and propose priority areas for active disease surveillance and field biosecurity measures. The magnitude of the disease threat identified here emphasizes the need for region-tailored disease abatement plans that couple active disease surveillance to rapid and drastic actions.

11.
Nat Ecol Evol ; 4(10): 1321-1326, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32690905

RESUMO

Australia's 2019-2020 mega-fires were exacerbated by drought, anthropogenic climate change and existing land-use management. Here, using a combination of remotely sensed data and species distribution models, we found these fires burnt ~97,000 km2 of vegetation across southern and eastern Australia, which is considered habitat for 832 species of native vertebrate fauna. Seventy taxa had a substantial proportion (>30%) of habitat impacted; 21 of these were already listed as threatened with extinction. To avoid further species declines, Australia must urgently reassess the extinction vulnerability of fire-impacted species and assist the recovery of populations in both burnt and unburnt areas. Population recovery requires multipronged strategies aimed at ameliorating current and fire-induced threats, including proactively protecting unburnt habitats.


Assuntos
Incêndios , Austrália , Mudança Climática , Secas , Ecossistema
12.
Science ; 367(6484)2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32193294

RESUMO

Lambert et al question our retrospective and holistic epidemiological assessment of the role of chytridiomycosis in amphibian declines. Their alternative assessment is narrow and provides an incomplete evaluation of evidence. Adopting this approach limits understanding of infectious disease impacts and hampers conservation efforts. We reaffirm that our study provides unambiguous evidence that chytridiomycosis has affected at least 501 amphibian species.


Assuntos
Quitridiomicetos , Micoses , Anfíbios , Animais , Biodiversidade , Estudos Retrospectivos
13.
Ecol Appl ; 29(8): e01999, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31519053

RESUMO

Forests globally are subject to disturbances such as logging and fire that create complex temporal variation in spatial patterns of forest cover and stand age. However, investigations that quantify temporal changes in biodiversity in response to multiple forms of disturbance in space and time are relatively uncommon. Over a 10-yr period, we investigated the response of bird species to spatiotemporal changes in forest cover associated with logging and wildfire in the mountain ash (Eucalyptus regnans) forests of southeastern Australia. Specifically, we examined how bird occurrence changed with shifts in the proportion of area burned or logged in a 4.5 km radius surrounding our 88 long-term field survey sites, each measuring 1 ha in size. Overall species richness was greatest in older forest patches, but declined as the amount of fire around each site increased. At the individual species level, 31 of the 37 bird species we modeled exhibited a negative response to the amount of fire in the surrounding landscape, while one species responded positively to fire. Only nine species exhibited signs of recovery in the 6 yr of surveys following the fire. Five species were more likely to be detected as the proportion of logged forest surrounding a site increased, suggesting a possible "concentration effect" with displaced birds moving into unlogged areas following harvesting of adjacent areas. We also identified relationships between the coefficients of life history attributes and spatiotemporal changes in forest cover and stand age. Large-bodied birds and migratory species were associated with landscapes subject to large amounts of fire in 2009. There were associations between old growth stands and small-bodied bird species and species that were not insectivores. Our study shows that birds in mountain ash forests are strongly associated with old growth stands and exhibit complex, time-dependent, and species-specific responses to landscape disturbance. Despite logging and fire both being high-severity perturbations, no bird species exhibited similar responses to fire and logging in the landscape surrounding our sites. Thus, species responses to one kind of landscape-scale disturbance are not readily predictable based on an understanding of the responses to another kind of (albeit superficially similar) disturbance.


Assuntos
Florestas , Incêndios Florestais , Animais , Austrália , Biodiversidade , Aves
14.
Conserv Biol ; 33(6): 1256-1265, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-30997704

RESUMO

Achieving coexistence between large carnivores and humans in human-dominated landscapes (HDLs) is a key challenge for societies globally. This challenge cannot be adequately met with the current sectoral approaches to HDL governance and an academic community largely dominated by disciplinary sectors. Academia (universities and other research institutions and organizations) should take a more active role in embracing societal challenges around conservation of large carnivores in HDLs by facilitating cross-sectoral cooperation to mainstream coexistence of humans and large carnivores. Drawing on lessons from populated regions of Europe, Asia, and South America with substantial densities of large carnivores, we suggest academia should better embrace the principles and methods of sustainability sciences and create institutional spaces for the implementation of transdisciplinary curricula and projects; reflect on research approaches (i.e., disciplinary, interdisciplinary, or transdisciplinary) they apply and how their outcomes could aid leveraging institutional transformations for mainstreaming; and engage with various institutions and stakeholder groups to create novel institutional structures that can respond to multiple challenges of HDL management and human-large carnivore coexistence. Success in mainstreaming this coexistence in HDL will rest on the ability to think and act cooperatively. Such a conservation achievement, if realized, stands to have far-reaching benefits for people and biodiversity.


Incorporación de la Coexistencia entre Humanos y Carnívoros Mayores por Medio de la Colaboración Institucional Resumen Un reto importante para las sociedades mundiales es lograr la coexistencia entre los carnívoros mayores y los humanos en los paisajes dominados por el hombre (HDL, en inglés). Este reto no puede enfrentarse adecuadamente con las actuales estrategias sectoriales que se usan en la gobernanza de los HDL y con una comunidad académica dominada principalmente por sectores disciplinarios. La academia (las universidades y demás instituciones y organizaciones de investigación) debería realizar un papel más activo en la aceptación de los retos sociales que rodean a la conservación de los carnívoros mayores en los HDL al facilitar la cooperación intersectorial para incorporar la coexistencia entre humanos y dichos carnívoros. A partir de las lecciones aprendidas en las regiones pobladas por densidades abundantes de carnívoros mayores en América del Sur, Asia y Europa, sugerimos que la academia debería aceptar de mejor manera los principios y métodos de las ciencia de la sustentabilidad y crear espacios institucionales para la implementación de currículos y proyectos; reflexionar sobre las estrategias de investigación (es decir, disciplinaria, interdisciplinaria o transdisciplinaria) que aplican y cómo sus resultados podrían ayudar en fomentar las transformaciones institucionales para la incorporación; y participar junto a varias instituciones y grupos de accionistas para crear estructuras institucionales novedosas que puedan responder a los múltiples retos del manejo de los HDL y de la coexistencia entre humanos y carnívoros mayores. El éxito en la incorporación de esta coexistencia en los HDL dependerá de la habilidad para pensar y actuar cooperativamente. Tal logro de conservación, si se alcanza, promete tener beneficios de largo alcance para las personas y para la biodiversidad.


Assuntos
Carnívoros , Conservação dos Recursos Naturais , Animais , Ásia , Biodiversidade , Europa (Continente) , Humanos
15.
Science ; 363(6434): 1459-1463, 2019 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-30923224

RESUMO

Anthropogenic trade and development have broken down dispersal barriers, facilitating the spread of diseases that threaten Earth's biodiversity. We present a global, quantitative assessment of the amphibian chytridiomycosis panzootic, one of the most impactful examples of disease spread, and demonstrate its role in the decline of at least 501 amphibian species over the past half-century, including 90 presumed extinctions. The effects of chytridiomycosis have been greatest in large-bodied, range-restricted anurans in wet climates in the Americas and Australia. Declines peaked in the 1980s, and only 12% of declined species show signs of recovery, whereas 39% are experiencing ongoing decline. There is risk of further chytridiomycosis outbreaks in new areas. The chytridiomycosis panzootic represents the greatest recorded loss of biodiversity attributable to a disease.


Assuntos
Anuros/microbiologia , Anuros/fisiologia , Biodiversidade , Quitridiomicetos , Extinção Biológica , Micoses/veterinária , América/epidemiologia , Animais , Anuros/classificação , Austrália/epidemiologia , Micoses/epidemiologia
16.
Glob Chang Biol ; 25(2): 675-685, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30431211

RESUMO

Species occurrence is influenced by a range of factors including habitat attributes, climate, weather, and human landscape modification. These drivers are likely to interact, but their effects are frequently quantified independently. Here, we report the results of a 13-year study of temperate woodland birds in south-eastern Australia to quantify how different-sized birds respond to the interacting effects of: (a) short-term weather (rainfall and temperature in the 12 months preceding our surveys), (b) long-term climate (average rainfall and maximum and minimum temperatures over the period 1970-2014), and (c) broad structural forms of vegetation (old-growth woodland, regrowth woodland, and restoration plantings). We uncovered significant interactions between bird body size, vegetation type, climate, and weather. High short-term rainfall was associated with decreased occurrence of large birds in old-growth and regrowth woodland, but not in restoration plantings. Conversely, small bird occurrence peaked in wet years, but this effect was most pronounced in locations with a history of high rainfall, and was actually reversed (peak occurrence in dry years) in restoration plantings in dry climates. The occurrence of small birds was depressed-and large birds elevated-in hot years, except in restoration plantings which supported few large birds under these circumstances. Our investigation suggests that different mechanisms may underpin contrasting responses of small and large birds to the interacting effects of climate, weather, and vegetation type. A diversity of vegetation cover is needed across a landscape to promote the occurrence of different-sized bird species in agriculture-dominated landscapes, particularly under variable weather conditions. Climate change is predicted to lead to widespread drying of our study region, and restoration plantings-especially currently climatically wet areas-may become critically important for conserving bird species, particularly small-bodied taxa.


Assuntos
Aves/fisiologia , Tamanho Corporal , Mudança Climática , Clima , Florestas , Tempo (Meteorologia) , Animais , Agricultura Florestal , New South Wales
17.
Sci Data ; 5: 180033, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509187

RESUMO

The fungal skin disease chytridiomycosis has caused the devastating decline and extinction of hundreds of amphibian species globally, yet the potential for evolving resistance, and the underlying pathophysiological mechanisms remain poorly understood. We exposed 406 naïve, captive-raised alpine tree frogs (Litoria verreauxii alpina) from multiple populations (one evolutionarily naïve to chytridiomycosis) to the aetiological agent Batrachochytrium dendrobatidis in two concurrent and controlled infection experiments. We investigated (A) survival outcomes and clinical pathogen burdens between populations and clutches, and (B) individual host tissue responses to chytridiomycosis. Here we present multiple interrelated datasets associated with these exposure experiments, including animal signalment, survival and pathogen burden of 355 animals from Experiment A, and the following datasets related to 61 animals from Experiment B: animal signalment and pathogen burden; raw RNA-Seq reads from skin, liver and spleen tissues; de novo assembled transcriptomes for each tissue type; raw gene expression data; annotation data for each gene; and raw metabolite expression data from skin and liver tissues. These data provide an extensive baseline for future analyses.


Assuntos
Doenças dos Animais , Anuros , Quitridiomicetos , Micoses , Doenças dos Animais/genética , Doenças dos Animais/metabolismo , Doenças dos Animais/microbiologia , Doenças dos Animais/fisiopatologia , Animais , Micoses/genética , Micoses/metabolismo , Micoses/fisiopatologia
18.
Mol Ecol ; 27(4): 919-934, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29337419

RESUMO

Potentiating the evolution of immunity is a promising strategy for addressing biodiversity diseases. Assisted selection for infection resistance may enable the recovery and persistence of amphibians threatened by chytridiomycosis, a devastating fungal skin disease threatening hundreds of species globally. However, knowledge of the mechanisms involved in the natural evolution of immunity to chytridiomycosis is limited. Understanding the mechanisms of such resistance may help speed-assisted selection. Using a transcriptomics approach, we examined gene expression responses of endangered alpine tree frogs (Litoria verreauxii alpina) to subclinical infection, comparing two long-exposed populations with a naïve population. We performed a blinded, randomized and controlled exposure experiment, collecting skin, liver and spleen tissues at 4, 8 and 14 days postexposure from 51 wild-caught captively reared infection-naïve adult frogs for transcriptome assembly and differential gene expression analyses. We analysed our results in conjunction with infection intensity data, and the results of a large clinical survival experiment run concurrently with individuals from the same clutches. Here, we show that frogs from an evolutionarily long-exposed and phenotypically more resistant population of the highly susceptible alpine tree frog demonstrate a more robust innate and adaptive immune response at the critical early subclinical stage of infection when compared with two more susceptible populations. These results are consistent with the occurrence of evolution of resistance against chytridiomycosis, help to explain underlying resistance mechanisms, and provide genes of potential interest and sequence data for future research. We recommend further investigation of cell-mediated immunity pathways, the role of interferons and mechanisms of lymphocyte suppression.


Assuntos
Anuros/imunologia , Anuros/microbiologia , Quitridiomicetos/fisiologia , Resistência à Doença/imunologia , Imunidade , Micoses/imunologia , Micoses/microbiologia , Animais , Anuros/genética , Análise por Conglomerados , Tamanho da Ninhada , Regulação para Baixo/genética , Feminino , Ontologia Genética , Masculino , Anotação de Sequência Molecular , Família Multigênica , Análise de Sobrevida , Transcriptoma/genética , Regulação para Cima/genética
20.
Trends Ecol Evol ; 32(5): 346-355, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28284374

RESUMO

A fundamental aim of conservation biology is to understand how species respond to threatening processes, with much research effort focused on identifying threats and quantifying spatial and temporal patterns of species decline. Here, we argue that threats often reduce the realized niche breadth of declining species because environmental, biotic, and evolutionary processes reduce or amplify threats, or because a species' capacity to tolerate threats varies across niche space. Our 'niche reduction hypothesis' provides a new lens for understanding why species decline in some locations and not others. This perspective can improve management of declining species by identifying where to focus resources and which interventions are most likely to be effective in a given environment.


Assuntos
Evolução Biológica , Ecossistema , Meio Ambiente , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...