Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Biotechnol ; 38(1): 90-96, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31685958

RESUMO

Mosaicism, the presence of subpopulations of cells bearing somatic mutations, is associated with disease and aging and has been detected in diverse tissues, including apparently normal cells adjacent to tumors. To analyze mosaicism on a large scale, we surveyed haplotype-specific somatic copy number alterations (sCNAs) in 1,708 normal-appearing adjacent-to-tumor (NAT) tissue samples from 27 cancer sites and in 7,149 blood samples from The Cancer Genome Atlas. We find substantial variation across tissues in the rate, burden and types of sCNAs, including those spanning entire chromosome arms. We document matching sCNAs in the NAT tissue and the adjacent tumor, suggesting a shared clonal origin, as well as instances in which both NAT tissue and tumor tissue harbor a gain of the same oncogene arising in parallel from distinct parental haplotypes. These results shed light on pan-tissue mutations characteristic of field cancerization, the presence of oncogenic processes adjacent to cancer cells.


Assuntos
Aberrações Cromossômicas , Neoplasias/genética , Desequilíbrio Alélico , Células Clonais , Variações do Número de Cópias de DNA/genética , Genoma Humano , Humanos , Mosaicismo , Polimorfismo de Nucleotídeo Único/genética
2.
Ann Oncol ; 29(10): 2061-2067, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30412224

RESUMO

Background: Gene expression-based profiling of colorectal cancer (CRC) can be used to identify four molecularly homogeneous consensus molecular subtype (CMS) groups with unique biologic features. However, its applicability to colorectal premalignant lesions remains unknown. Patients and methods: We assembled the largest transcriptomic premalignancy dataset by integrating different public and proprietary cohorts of adenomatous and serrated polyps from sporadic (N = 311) and hereditary (N = 78) patient populations and carried out a comprehensive analysis of carcinogenesis pathways using the CMS random forest (RF) classifier. Results: Overall, transcriptomic subtyping of sporadic and hereditary polyps revealed CMS2 and CMS1 subgroups as the predominant molecular subtypes in premalignancy. Pathway enrichment analysis showed that adenomatous polyps from sporadic or hereditary cases (including Lynch syndrome) displayed a CMS2-like phenotype with WNT and MYC activation, whereas hyperplastic and serrated polyps with CMS1-like phenotype harbored prominent immune activation. Rare adenomas with CMS4-like phenotype showed significant enrichment for stromal signatures along with transforming growth factor-ß activation. There was a strong association of CMS1-like polyps with serrated pathology, right-sided anatomic location and BRAF mutations. Conclusions: Based on our observations made in premalignancy, we propose a model of pathway activation associated with CMS classification in colorectal carcinogenesis. Specifically, while adenomatous polyps are largely CMS2, most hyperplastic and serrated polyps are CMS1 and may transition into other CMS groups during evolution into carcinomas. Our findings shed light on the transcriptional landscape of premalignant colonic polyps and may help guide the development of future biomarkers or preventive treatments for CRC.


Assuntos
Adenoma/diagnóstico , Biomarcadores Tumorais/genética , Pólipos do Colo/diagnóstico , Neoplasias Colorretais/classificação , Neoplasias Colorretais/diagnóstico , Mutação , Lesões Pré-Cancerosas/diagnóstico , Adenoma/genética , Pólipos do Colo/genética , Neoplasias Colorretais/genética , Feminino , Seguimentos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Fenótipo , Lesões Pré-Cancerosas/genética , Valor Preditivo dos Testes , Prognóstico , Transcriptoma
3.
Genes Immun ; 16(7): 470-80, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26291516

RESUMO

Autoimmune muscle diseases (myositis) comprise a group of complex phenotypes influenced by genetic and environmental factors. To identify genetic risk factors in patients of European ancestry, we conducted a genome-wide association study (GWAS) of the major myositis phenotypes in a total of 1710 cases, which included 705 adult dermatomyositis, 473 juvenile dermatomyositis, 532 polymyositis and 202 adult dermatomyositis, juvenile dermatomyositis or polymyositis patients with anti-histidyl-tRNA synthetase (anti-Jo-1) autoantibodies, and compared them with 4724 controls. Single-nucleotide polymorphisms showing strong associations (P<5×10(-8)) in GWAS were identified in the major histocompatibility complex (MHC) region for all myositis phenotypes together, as well as for the four clinical and autoantibody phenotypes studied separately. Imputation and regression analyses found that alleles comprising the human leukocyte antigen (HLA) 8.1 ancestral haplotype (AH8.1) defined essentially all the genetic risk in the phenotypes studied. Although the HLA DRB1*03:01 allele showed slightly stronger associations with adult and juvenile dermatomyositis, and HLA B*08:01 with polymyositis and anti-Jo-1 autoantibody-positive myositis, multiple alleles of AH8.1 were required for the full risk effects. Our findings establish that alleles of the AH8.1 comprise the primary genetic risk factors associated with the major myositis phenotypes in geographically diverse Caucasian populations.


Assuntos
Alelos , Antígenos HLA/genética , Miosite/genética , Adolescente , Adulto , Autoanticorpos/imunologia , Estudos de Casos e Controles , Dermatomiosite/genética , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Polimiosite/genética , Fatores de Risco , População Branca
4.
Ann Oncol ; 25(10): 2008-2014, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25009008

RESUMO

BACKGROUND: KRAS mutations in codons 12 and 13 are present in ∼40% of all colorectal cancers (CRC). Activating mutations in codons 61 and 146 of KRAS and in codons 12, 13, and 61 of NRAS also occur but are less frequent. The clinicopathologic features and gene expression profiles of this latter subpopulation of RAS-mutant colorectal tumors have not yet been clearly defined but in general are treated similarly to those with KRAS 12 or 13 mutations. PATIENTS AND METHODS: Records of patients with metastatic CRC (mCRC) treated at MD Anderson Cancer Center between December 2000 and August 2012 were reviewed for RAS (KRAS or NRAS) and BRAF mutation status, clinical characteristics, and survival outcomes. To study further with an independent cohort, data from The Cancer Genome Atlas were analyzed to define a gene expression signature for patients whose tumors feature these atypical RAS mutations and explore differences with KRAS 12/13-mutated colorectal tumors. RESULTS: Among the 484 patients reviewed, KRAS 12/13, KRAS 61/146, NRAS, and BRAF mutations were detected in 47.7%, 3.0%, 4.1%, and 7.4%, respectively, of patients who were tested for each of these aberrations. Lung metastases were more common in both the KRAS 12/13-mutated and atypical RAS-mutated cohorts relative to patients with RAS/BRAF wild-type tumors. Gene expression analyses revealed similar patterns regardless of the site of RAS mutation, and in silico functional algorithms predicted that KRAS and NRAS mutations in codons 12, 13, 61, and 146 alter the protein function and drive tumorgenesis. CONCLUSIONS: Clinicopathologic characteristics, survival outcomes, functional impact, and gene expression profiling were similar between patients with KRAS 12/13 and those with NRAS or KRAS 61/146-mutated mCRC. These clinical and bioinformatic findings support the notion that colorectal tumors driven by these RAS mutations are phenotypically similar.


Assuntos
Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Idoso , Códon , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Masculino , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas B-raf/biossíntese , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/biossíntese
5.
Mol Psychiatry ; 19(2): 253-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23358156

RESUMO

Intelligence in childhood, as measured by psychometric cognitive tests, is a strong predictor of many important life outcomes, including educational attainment, income, health and lifespan. Results from twin, family and adoption studies are consistent with general intelligence being highly heritable and genetically stable throughout the life course. No robustly associated genetic loci or variants for childhood intelligence have been reported. Here, we report the first genome-wide association study (GWAS) on childhood intelligence (age range 6-18 years) from 17,989 individuals in six discovery and three replication samples. Although no individual single-nucleotide polymorphisms (SNPs) were detected with genome-wide significance, we show that the aggregate effects of common SNPs explain 22-46% of phenotypic variation in childhood intelligence in the three largest cohorts (P=3.9 × 10(-15), 0.014 and 0.028). FNBP1L, previously reported to be the most significantly associated gene for adult intelligence, was also significantly associated with childhood intelligence (P=0.003). Polygenic prediction analyses resulted in a significant correlation between predictor and outcome in all replication cohorts. The proportion of childhood intelligence explained by the predictor reached 1.2% (P=6 × 10(-5)), 3.5% (P=10(-3)) and 0.5% (P=6 × 10(-5)) in three independent validation cohorts. Given the sample sizes, these genetic prediction results are consistent with expectations if the genetic architecture of childhood intelligence is like that of body mass index or height. Our study provides molecular support for the heritability and polygenic nature of childhood intelligence. Larger sample sizes will be required to detect individual variants with genome-wide significance.


Assuntos
Proteínas de Transporte/genética , Inteligência/genética , Herança Multifatorial , Adolescente , Criança , Estudos de Coortes , Feminino , Estudo de Associação Genômica Ampla , Técnicas de Genotipagem , Humanos , Testes de Inteligência , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Software , População Branca/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA