Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
Cancer Immunol Res ; 9(1): 50-61, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33177109

RESUMO

Novel T cell-based therapies for the treatment of B-cell malignancies, such as chronic lymphocytic leukemia (CLL) and multiple myeloma (MM), are thought to have strong potential. Progress, however, has been hampered by low efficacy and high toxicity. Tumor targeting by Vγ9Vδ2 T cells, a conserved T-cell subset with potent intrinsic antitumor properties, mediated by a bispecific antibody represents a novel approach promising high efficacy with limited toxicity. Here, we describe the generation of a bispecific Vγ9Vδ2 T-cell engager directed against CD40, which, due to its overexpression and biological footprint in malignant B cells, represents an attractive target. The CD40-targeting moiety of the bispecific antibody was selected because it can prevent CD40L-induced prosurvival signaling and reduce CD40-mediated resistance of CLL cells to venetoclax. Selective activation of Vγ9Vδ2 T cells in the presence of CD40+ tumor cells induced potent Vγ9Vδ2 T-cell degranulation, cytotoxicity against CLL and MM cells in vitro, and in vivo control of MM in a xenograft model. The CD40-bispecific γδ T-cell engager demonstrated lysis of leukemic cells by autologous Vγ9Vδ2 T cells present in patient-derived samples. Taken together, our CD40 bispecific γδ T-cell engager increased the sensitivity of leukemic cells to apoptosis and induced a potent Vγ9Vδ2 T cell-dependent antileukemic response. It may, therefore, represent a potential candidate for the development of novel treatments for B-cell malignancies.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígenos CD40/imunologia , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Biespecíficos/imunologia , Linhagem Celular Tumoral , Feminino , Células HEK293 , Humanos , Leucemia Linfocítica Crônica de Células B/patologia , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Invest New Drugs ; 36(5): 797-809, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29442210

RESUMO

Background The hexapeptide 4A6 (Ac-Thr(tBu)-His(Bzl)-Thr(Bzl)-Nle-Glu(OtBu)-Gly-Bza) was isolated from a peptide library constructed to identify peptide-based transport inhibitors of multidrug resistance (MDR) efflux pumps including P-glycoprotein and Multidrug Resistance-associated Protein 1. 4A6 proved to be a substrate but not an inhibitor of these MDR efflux transporters. In fact, 4A6 and related peptides displayed potent cytotoxic activity via an unknown mechanism. Objective To decipher the mode of cytotoxic activity of 4A6. Methods Screening of 4A6 activity was performed against the NCI60 panel of cancer cell lines. Possible interactions of 4A6 with the 26S proteasome were assessed via proteasome activity and affinity labeling, and cell growth inhibition studies with leukemic cells resistant to the proteasome inhibitor bortezomib (BTZ). Results The NCI60 panel COMPARE analysis revealed that 4A6 had an activity profile overlapping with BTZ. Consistently, 4A6 proved to be a selective and reversible inhibitor of ß5 subunit (PSMB5)-associated chymotrypsin-like activity of the 26S proteasome. This conclusion is supported by several lines of evidence: (i) inhibition of chymotrypsin-like proteasome activity by 4A6 and related peptides correlated with their cell growth inhibition potencies; (ii) 4A6 reversibly inhibited functional ß5 active site labeling with the affinity probe BodipyFL-Ahx3L3VS; and (iii) human myeloid THP1 cells with acquired BTZ resistance due to mutated PSMB5 were highly (up to 287-fold) cross-resistant to 4A6 and its related peptides. Conclusion 4A6 is a novel specific inhibitor of the ß5 subunit-associated chymotrypsin-like proteasome activity. Further exploration of 4A6 as a lead compound for development as a novel proteasome-targeted drug is warranted.


Assuntos
Antineoplásicos/farmacologia , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Animais , Apoptose/efeitos dos fármacos , Bortezomib/farmacologia , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Biblioteca de Peptídeos
3.
Ann Intern Med ; 167(12): 855-866, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29159365

RESUMO

BACKGROUND: The fecal immunochemical test (FIT) for detecting hemoglobin is used widely for noninvasive colorectal cancer (CRC) screening, but its sensitivity leaves room for improvement. OBJECTIVE: To identify novel protein biomarkers in stool that outperform or complement hemoglobin in detecting CRC and advanced adenomas. DESIGN: Case-control study. SETTING: Colonoscopy-controlled referral population from several centers. PARTICIPANTS: 315 stool samples from one series of 12 patients with CRC and 10 persons without colorectal neoplasia (control samples) and a second series of 81 patients with CRC, 40 with advanced adenomas, and 43 with nonadvanced adenomas, as well as 129 persons without colorectal neoplasia (control samples); 72 FIT samples from a third independent series of 14 patients with CRC, 16 with advanced adenomas, and 18 with nonadvanced adenomas, as well as 24 persons without colorectal neoplasia (control samples). MEASUREMENTS: Stool samples were analyzed by mass spectrometry. Classification and regression tree (CART) analysis and logistic regression analyses were performed to identify protein combinations that differentiated CRC or advanced adenoma from control samples. Antibody-based assays for 4 selected proteins were done on FIT samples. RESULTS: In total, 834 human proteins were identified, 29 of which were statistically significantly enriched in CRC versus control stool samples in both series. Combinations of 4 proteins reached sensitivities of 80% and 45% for detecting CRC and advanced adenomas, respectively, at 95% specificity, which was higher than that of hemoglobin alone (P < 0.001 and P = 0.003, respectively). Selected proteins could be measured in small sample volumes used in FIT-based screening programs and discriminated between CRC and control samples (P < 0.001). LIMITATION: Lack of availability of antibodies prohibited validation of the top protein combinations in FIT samples. CONCLUSION: Mass spectrometry of stool samples identified novel candidate protein biomarkers for CRC screening. Several protein combinations outperformed hemoglobin in discriminating CRC or advanced adenoma from control samples. Proof of concept that such proteins can be detected with antibody-based assays in small sample volumes indicates the potential of these biomarkers to be applied in population screening. PRIMARY FUNDING SOURCE: Center for Translational Molecular Medicine, International Translational Cancer Research Dream Team, Stand Up to Cancer (American Association for Cancer Research and the Dutch Cancer Society), Dutch Digestive Foundation, and VU University Medical Center.


Assuntos
Neoplasias Colorretais/diagnóstico , Detecção Precoce de Câncer/métodos , Fezes/química , Adenoma/diagnóstico , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/análise , Estudos de Casos e Controles , Colonoscopia , Feminino , Humanos , Modelos Logísticos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Proteínas/análise , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
4.
Proc Natl Acad Sci U S A ; 113(5): E587-96, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26768848

RESUMO

Complex interactions between DNA herpesviruses and host factors determine the establishment of a life-long asymptomatic latent infection. The lymphotropic Epstein-Barr virus (EBV) seems to avoid recognition by innate sensors despite massive transcription of immunostimulatory small RNAs (EBV-EBERs). Here we demonstrate that in latently infected B cells, EBER1 transcripts interact with the lupus antigen (La) ribonucleoprotein, avoiding cytoplasmic RNA sensors. However, in coculture experiments we observed that latent-infected cells trigger antiviral immunity in dendritic cells (DCs) through selective release and transfer of RNA via exosomes. In ex vivo tonsillar cultures, we observed that EBER1-loaded exosomes are preferentially captured and internalized by human plasmacytoid DCs (pDCs) that express the TIM1 phosphatidylserine receptor, a known viral- and exosomal target. Using an EBER-deficient EBV strain, enzymatic removal of 5'ppp, in vitro transcripts, and coculture experiments, we established that 5'pppEBER1 transfer via exosomes drives antiviral immunity in nonpermissive DCs. Lupus erythematosus patients suffer from elevated EBV load and activated antiviral immunity, in particular in skin lesions that are infiltrated with pDCs. We detected high levels of EBER1 RNA in such skin lesions, as well as EBV-microRNAs, but no intact EBV-DNA, linking non-cell-autonomous EBER1 presence with skin inflammation in predisposed individuals. Collectively, our studies indicate that virus-modified exosomes have a physiological role in the host-pathogen stand-off and may promote inflammatory disease.


Assuntos
Células Dendríticas/virologia , Infecções por Vírus Epstein-Barr/genética , Exossomos/metabolismo , RNA Viral/metabolismo , Transporte Biológico , Infecções por Vírus Epstein-Barr/imunologia , Herpesvirus Humano 4/genética , Humanos , Proteoma
5.
Oncotarget ; 7(5): 5240-57, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26496029

RESUMO

Aminopeptidase inhibitors are receiving attention as combination chemotherapeutic agents for the treatment of refractory acute myeloid leukemia. However, the factors determining therapeutic efficacy remain elusive. Here we identified the molecular basis of acquired resistance to CHR2863, an orally available hydrophobic aminopeptidase inhibitor prodrug with an esterase-sensitive motif, in myeloid leukemia cells. CHR2863 enters cells by diffusion and is retained therein upon esterase activity-mediated conversion to its hydrophilic active metabolite drug CHR6768, thereby exerting amino acid depletion. Carboxylesterases (CES) serve as candidate prodrug activating enzymes given CES1 expression in acute myeloid leukemia specimens. We established two novel myeloid leukemia sublines U937/CHR2863(200) and U937/CHR2863(5uM), with low (14-fold) and high level (270-fold) CHR2863 resistance. The latter drug resistant cells displayed: (i) complete loss of CES1-mediated drug activation associated with down-regulation of CES1 mRNA and protein, (ii) marked retention/sequestration of the prodrug, (iii) a substantial increase in intracellular lipid droplets, and (iv) a dominant activation of the pro-survival Akt/mTOR pathway. Remarkably, the latter feature coincided with a gain of sensitivity to the mTOR inhibitor rapamycin. These finding delineate the molecular basis of CHR2863 resistance and offer a novel modality to overcome this drug resistance in myeloid leukemia cells.


Assuntos
Aminopeptidases/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Apoptose , Regulação para Baixo , Humanos , Gotículas Lipídicas , Fosforilação , Pró-Fármacos/metabolismo
6.
Curr Drug Targets ; 15(14): 1322-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25479544

RESUMO

While multidrug resistance (MDR) in cancer is well established, little is known about the cellular pathways regulating the expression and trafficking of the MDR efflux transporter like BCRP (ABCG2). Here we evaluated the role of signalling downstream of EGFR on BCRP expression and sub-cellular localization using lung cancer cells harboring BCRP but expressing various EGFR and Ras activating mutations; A549 (K-Ras-G12S), H292 wild-type EGFR and Ras, and H1650 (EGFR-DelE747-A750). Immunocytochemistry and immunofluorescence studies demonstrated that BCRP was predominantly intracellular but its expression was found also on the plasma membrane in A549 and H1650 cells with activated Ras and EGFR. Remarkably, EGFR inhibition by erlotinib at IC50 concentrations induced a differential timedependent alteration in BCRP gene and protein expression. In H1650 cells, erlotinib enhanced both the total and plasma membrane degradation of BCRP by ubiquitination within 6-24 hours, whereas BCRP expression regained the original basal levels after 48 hours. In erlotinib treated H292 cells, BCRP levels decreased at 24 hours until 72 hours, whereas in A549 cells erlotinib initially reduced BCRP expression but then induced its accumulation on the plasma membrane at 72 hours. We further found that the PI3K/Akt inhibitor LY294002 down-regulated BCRP expression, hence showing that the Akt pathway is involved in the regulation of BCRP expression but not in its localization in these lung cancer cell lines. Finally, the selective BCRP transport inhibitor Ko143 did not increase erlotinib sensitivity, but did decrease the transport activity of BCRP in A549 and H1650 cells as it induced the accumulation of its transport substrate topotecan. In conclusion, our results suggest that the EGFR and Akt pathways are involved in regulation of BCRP expression, trafficking and drug transport activity. These findings warrant future studies on the pharmacologic modulation of these pathways to enhance the efficacy of anticancer combinations of erlotinib with drugs that are BCRP transport substrates.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/metabolismo , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinazolinas/farmacologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina/análogos & derivados , Adenosina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cromonas/farmacologia , Citoplasma/metabolismo , Dicetopiperazinas , Cloridrato de Erlotinib , Compostos Heterocíclicos de 4 ou mais Anéis , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Morfolinas/farmacologia , Proteínas de Neoplasias/genética , Transdução de Sinais/efeitos dos fármacos
7.
Cell Metab ; 19(6): 1008-19, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24836561

RESUMO

Several lines of evidence predict that specific pathways must exist in metazoans for the escorted movement of heme, an essential but cytotoxic iron-containing organic ring, within and between cells and tissues, but these pathways remain obscure. In Caenorhabditis elegans, embryonic development is inextricably dependent on both maternally derived heme and environmentally acquired heme. Here, we show that the multidrug resistance protein MRP-5/ABCC5 likely acts as a heme exporter, and targeted depletion of mrp-5 in the intestine causes embryonic lethality. Transient knockdown of mrp5 in zebrafish leads to morphological defects and failure to hemoglobinize red blood cells. MRP5 resides on the plasma membrane and endosomal compartments and regulates export of cytosolic heme. Together, our genetic studies in worms, yeast, zebrafish, and mammalian cells identify a conserved, physiological role for a multidrug resistance protein in regulating systemic heme homeostasis. We envision other MRP family members may play similar unanticipated physiological roles in animal development.


Assuntos
Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Eritropoese/fisiologia , Heme/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/genética , Eritrócitos/patologia , Eritrócitos Anormais/citologia , Mucosa Intestinal/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Transporte Proteico , Interferência de RNA , RNA Interferente Pequeno , Peixe-Zebra/fisiologia
8.
Springerplus ; 3: 732, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25674464

RESUMO

UNLABELLED: We aimed to determine whether the multidrug-resistance-proteins MRP4 (ABCC4) and MRP5 (ABCC5) confer resistance to the antimetabolites cytarabine (Ara-C), gemcitabine (GEM), and the L-nucleoside analog troxacitabine. For this purpose we used HEK293 and the transfected HEK/MRP4 (59-fold increased MRP4) or HEK/MRP5i (991-fold increased MRP5) as model systems and tested the cells for drug sensitivity using a proliferation test. Drug accumulation was performed by using radioactive Ara-C, and for GEM and troxacitabine with HPLC with tandem-MS or UV detection. At 4-hr exposure HEK/MRP4 cells were 2-4-fold resistant to troxacitabine, ara-C and 9-(2-phosphonylmethoxyethyl)adenine (PMEA), and HEK/MRP5i to ara-C and PMEA, but none to GEM. The inhibitors probenecid and indomethacin reversed resistance. After 4-hr exposure ara-C-nucleotides were 2-3-fold lower in MRP4/5 cells, in which they decreased more rapidly after washing with drug-free medium (DFM). Trocacitabine accumulation was similar in the 3 cell lines, but after the DFM period troxacitabine decreased 2-4-fold faster in MRP4/5 cells. Troxacitabine-nucleotides were about 25% lower in MRP4/5 cells and decreased rapidly in MRP4, but not in MRP5 cells. Accumulation of GEM-nucleotides was higher in the MRP4/5 cells. IN CONCLUSION: MRP4 and MRP5 overexpression confer resistance to troxacitabine and ara-C, but not to GEM, which was associated with a rapid decline of the ara-C and troxacitabine-nucleotides in HEK/MRP4-5 cells.

9.
Exp Hematol Oncol ; 2(1): 2, 2013 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-23305345

RESUMO

BACKGROUND: In clinical and experimental settings, antibody-based anti-CD20/rituximab and small molecule proteasome inhibitor (PI) bortezomib (BTZ) treatment proved effective modalities for B cell depletion in lymphoproliferative disorders as well as autoimmune diseases. However, the chronic nature of these diseases requires either prolonged or re-treatment, often with acquired resistance as a consequence. METHODS: Here we studied the molecular basis of acquired resistance to BTZ in JY human B lymphoblastic cells following prolonged exposure to this drug and examined possibilities to overcome resistance by next generation PIs and anti-CD20/rituximab-mediated complement-dependent cytotoxicity (CDC). RESULTS: Characterization of BTZ-resistant JY/BTZ cells compared to parental JY/WT cells revealed the following features: (a) 10-12 fold resistance to BTZ associated with the acquisition of a mutation in the PSMB5 gene (encoding the constitutive ß5 proteasome subunit) introducing an amino acid substitution (Met45Ile) in the BTZ-binding pocket, (b) a significant 2-4 fold increase in the mRNA and protein levels of the constitutive ß5 proteasome subunit along with unaltered immunoproteasome expression, (c) full sensitivity to the irreversible epoxyketone-based PIs carfilzomib and (to a lesser extent) the immunoproteasome inhibitor ONX 0914. Finally, in association with impaired ubiquitination and attenuated breakdown of CD20, JY/BTZ cells harbored a net 3-fold increase in CD20 cell surface expression, which was functionally implicated in conferring a significantly increased anti-CD20/rituximab-mediated CDC. CONCLUSIONS: These results demonstrate that acquired resistance to BTZ in B cells can be overcome by next generation PIs and by anti-CD20/rituximab-induced CDC, thereby paving the way for salvage therapy in BTZ-resistant disease.

10.
PLoS One ; 7(11): e48423, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23166586

RESUMO

We have developed a rapid, simple and reliable, antibody-based flow cytometry assay for the quantitative determination of membrane proteins in human erythrocytes. Our method reveals significant differences between the expression levels of the wild-type ABCG2 protein and the heterozygous Q141K polymorphic variant. Moreover, we find that nonsense mutations on one allele result in a 50% reduction in the erythrocyte expression of this protein. Since ABCG2 polymorphisms are known to modify essential pharmacokinetic parameters, uric acid metabolism and cancer drug resistance, a direct determination of the erythrocyte membrane ABCG2 protein expression may provide valuable information for assessing these conditions or for devising drug treatments. Our findings suggest that erythrocyte membrane protein levels may reflect genotype-dependent tissue expression patterns. Extension of this methodology to other disease-related or pharmacologically important membrane proteins may yield new protein biomarkers for personalized diagnostics.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Eritrócitos/metabolismo , Citometria de Fluxo/métodos , Expressão Gênica/genética , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Códon sem Sentido/genética , Humanos , Mutação de Sentido Incorreto/genética , Proteínas de Neoplasias/genética
11.
Breast Cancer Res ; 14(6): R149, 2012 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-23174366

RESUMO

INTRODUCTION: Bone is the most common site of breast cancer metastasis, and complications associated with bone metastases can lead to a significantly decreased patient quality of life. Thus, it is essential to gain a better understanding of the molecular mechanisms that underlie the emergence and growth of breast cancer skeletal metastases. METHODS: To search for novel molecular mediators that influence breast cancer bone metastasis, we generated gene-expression profiles from laser-capture microdissected trephine biopsies of both breast cancer bone metastases and independent primary breast tumors that metastasized to bone. Bioinformatics analysis identified genes that are differentially expressed in breast cancer bone metastases compared with primary, bone-metastatic breast tumors. RESULTS: ABCC5, an ATP-dependent transporter, was found to be overexpressed in breast cancer osseous metastases relative to primary breast tumors. In addition, ABCC5 was significantly upregulated in human and mouse breast cancer cell lines with high bone-metastatic potential. Stable knockdown of ABCC5 substantially reduced bone metastatic burden and osteolytic bone destruction in mice. The decrease in osteolysis was further associated with diminished osteoclast numbers in vivo. Finally, conditioned media from breast cancer cells with reduced ABCC5 expression failed to induce in vitro osteoclastogenesis to the same extent as conditioned media from breast cancer cells expressing ABCC5. CONCLUSIONS: Our data suggest that ABCC5 functions as a mediator of breast cancer skeletal metastasis. ABCC5 expression in breast cancer cells is important for efficient osteoclast-mediated bone resorption. Hence, ABCC5 may be a potential therapeutic target for breast cancer bone metastasis.


Assuntos
Neoplasias Ósseas/secundário , Neoplasias da Mama/patologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Osteoclastos/patologia , Animais , Osso e Ossos/patologia , Linhagem Celular Tumoral , Feminino , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos SCID , Proteínas Associadas à Resistência a Múltiplos Medicamentos/biossíntese , Osteólise/genética , Interferência de RNA , RNA Interferente Pequeno , Tomografia Computadorizada por Raios X
12.
Drug Metab Dispos ; 40(9): 1817-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22699396

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is represented by a spectrum of liver pathologies ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). Liver damage sustained in the progressive stages of NAFLD may alter the ability of the liver to properly metabolize and eliminate xenobiotics. The purpose of the current study was to determine whether NAFLD alters the disposition of the environmental toxicant arsenic. C57BL/6 mice were fed either a high-fat or a methionine-choline-deficient diet to model simple steatosis and NASH, respectively. At the conclusion of the dietary regimen, all mice were given a single oral dose of either sodium arsenate or arsenic trioxide. Mice with NASH excreted significantly higher levels of total arsenic in urine (24 h) compared with controls. Total arsenic in the liver and kidneys of NASH mice was not altered; however, NASH liver retained significantly higher levels of the monomethyl arsenic metabolite, whereas dimethyl arsenic was retained significantly less in the kidneys of NASH mice. NASH mice had significantly higher levels of the more toxic trivalent form in their urine, whereas the pentavalent form was preferentially retained in the liver of NASH mice. Moreover, hepatic protein expression of the arsenic biotransformation enzyme arsenic (3+ oxidation state) methyltransferase was not altered in NASH animals, whereas protein expression of the membrane transporter multidrug resistance-associated protein 1 was increased, implicating cellular transport rather than biotransformation as a possible mechanism. These results suggest that NASH alters the disposition of arsenical species, which may have significant implications on the overall toxicity associated with arsenic in NASH.


Assuntos
Arseniatos/farmacocinética , Arsenicais/farmacocinética , Poluentes Ambientais/farmacocinética , Fígado Gorduroso/metabolismo , Fígado/metabolismo , Óxidos/farmacocinética , Animais , Arseniatos/toxicidade , Arseniatos/urina , Trióxido de Arsênio , Arsenicais/urina , Biotransformação , Deficiência de Colina/complicações , Dieta Hiperlipídica , Modelos Animais de Doenças , Poluentes Ambientais/toxicidade , Poluentes Ambientais/urina , Fígado Gorduroso/etiologia , Fígado Gorduroso/urina , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Metionina/deficiência , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Hepatopatia Gordurosa não Alcoólica , Óxidos/toxicidade , Óxidos/urina
13.
J Pharmacol Exp Ther ; 341(1): 174-82, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22235146

RESUMO

Bortezomib (BTZ), a registered proteasome inhibitor (PI) for multiple myeloma, has also been proposed as a potential antirheumatic agent. Its reported side effects, however, make it unappealing for long-term administration, and resistance may also develop. To overcome this, second-generation PIs became available. Here, we investigated whether a novel class of peptide epoxyketone-based PIs, including carfilzomib, N-((S)-3-methoxy-1-(((S)-3-methoxy-1-(((S)-1-((R)-2-methyloxiran-2-yl)-1-oxo-3-phenylpropan-2-yl)amino)-1-oxopropan-2-yl)amino)-1-oxopropan-2-yl)-2-methylthiazole-5-carboxamide (ONX0912), and (S)-3-(4-methoxyphenyl)-N-((S)-1-((S)-2-methyloxiran-2-yl)-1-oxo-3-phenylpropan-2-yl)-2-((S)-2-(2-morpholinoacetamido)propanamido)propanamide (ONX0914), might escape two established BTZ-resistance mechanisms: 1) mutations in the proteasome ß5 subunit (PSMB5) targeted by these PIs, and 2) drug efflux mediated by ATP-binding cassette transporters. THP1 myeloid sublines with acquired resistance to BTZ (54- to 235-fold) caused by mutations in the PSMB5 gene displayed marked cross-resistance but less pronounced cross-resistance to carfilzomib (9- to 32-fold), ONX0912 (39- to 62-fold), and ONX0914 (27- to 97-fold). As for ATP-binding cassette transporter-mediated efflux, lymphoid CEM/VLB cells with P-glycoprotein (Pgp)/multidrug resistance 1 overexpression exhibited substantial resistance to carfilzomib (114-fold), ONX0912 (23-fold), and ONX0914 (162-fold), whereas less resistance to BTZ (4.5-fold) was observed. Consistently, ß5 subunit-associated chymotrypsin-like proteasome activity was significantly less inhibited in these CEM/VLB cells. Ex vivo analysis of peripheral blood mononuclear cells from therapy-naive patients with rheumatoid arthritis revealed that, although basal Pgp levels were low, P-glycoprotein expression compromised the inhibitory effect of carfilzomib and ONX0914. However, the use of P121 (reversin 121), a Pgp transport inhibitor, restored parental cell inhibitory levels in both CEM/VLB cells and peripheral blood mononuclear cells. These results indicate that the pharmacologic activity of these PIs may be hindered by drug resistance mechanisms involving PSMB5 mutations and PI extrusion via Pgp.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/fisiologia , Artrite Reumatoide/metabolismo , Leucócitos Mononucleares/metabolismo , Mutação/genética , Inibidores de Proteassoma , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/imunologia , Ácidos Borônicos/farmacologia , Ácidos Borônicos/uso terapêutico , Bortezomib , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/fisiologia , Células HEK293 , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/imunologia , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Resultado do Tratamento
14.
Immunol Cell Biol ; 90(2): 206-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21445088

RESUMO

Epidermal Langerhans cells (LC) and dermal interstitial dendritic cells (IDC) were found to express the ATP-binding cassette (ABC) transporter breast cancer resistance protein (BCRP; ABCG2). Also, low BCRP expression was present on CD34(+) blood DC precursors and expression was increased upon their differentiation to LC. The CD34(+) acute myeloid leukemia-derived DC cell line MUTZ3 can be cultured into LC or IDC, depending on the cytokine cocktail used. Introduction of functional BCRP in MUTZ3 progenitor cells through retroviral transduction resulted in the emergence of typical LC-characteristics in IDC cultures; the majority of cells remained negative for the IDC-specific C-type lectin DC-SIGN, but rather displayed enhanced expression of the LC-specific C-type lectin Langerin and characteristic high expression levels of CD1a. BCRP-induced skewing toward LC-like differentiation coincided with early RelB expression in 'IDC', derived from MUTZ3-BCRP, and depended on endogenous transforming growth factor beta (TGF-ß) production. Intriguingly, cellular BCRP localization differed between skin LC and IDC, and a more cytoplasmic BCRP localization, as observed in primary skin LC, seemed to relate to LC-like differentiation in IDC cultures upon BCRP introduction in MUTZ3 progenitors. Together these data support a role for BCRP in preferential LC differentiation from CD34(+) myeloid DC progenitors.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Dendríticas/metabolismo , Células de Langerhans/metabolismo , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antígenos CD1/metabolismo , Antígenos CD34/metabolismo , Neoplasias da Mama , Diferenciação Celular , Linhagem Celular Tumoral , Células Dendríticas/citologia , Células Dendríticas/imunologia , Feminino , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Células de Langerhans/citologia , Células de Langerhans/imunologia , Lectinas Tipo C/imunologia , Lectinas Tipo C/metabolismo , Leucemia Mieloide Aguda , Pele/metabolismo , Fator de Transcrição RelB/metabolismo , Fator de Crescimento Transformador beta/imunologia , Fator de Crescimento Transformador beta/metabolismo
15.
Cancer Immunol Immunother ; 61(2): 181-191, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21874304

RESUMO

Appropriate activation of dendritic cells (DC) is essential for successful active vaccination and induction of cell-mediated immunity. The scarcity of precursor cells, as well as long culture methods, have hampered wide-scale application of DC vaccines derived from CD34(+) precursors, despite their suggested superior efficacy over the more commonly applied monocyte-derived DC (MoDC). Here, employing the CD34(+)/CD14(+) AML-derived human DC progenitor cell line MUTZ3, we show that cytostatic anthraquinone-derivatives (i.e., the anthracenedione mitoxantrone and the related anthracyclin doxorubicin) induce rapid differentiation of CD34(+) DC precursors into functional antigen-presenting cells (APC) in a three-day protocol. The drugs were found to act specifically on CD34(+), and not on CD14(+) DC precursors. Importantly, these observations were confirmed for primary CD34(+) and CD14(+) DC precursors from peripheral blood. Mitoxantrone-generated DC were fully differentiated within three days and after an additional 24 h of maturation, were as capable as standard 9-day differentiated and matured DC to migrate toward the lymph node-homing chemokines CCL19 and CCL21, to induce primary allogeneic T cell proliferation, and to prime functional MART1-specific CD8(+) T lymphocytes. Our finding that anthraquinone-derivatives like mitoxantrone support rapid high-efficiency differentiation of DC precursors may have consequences for in vitro production of DC vaccines as well as for novel immunochemotherapy strategies.


Assuntos
Vacinas Anticâncer , Células Dendríticas/metabolismo , Imunoterapia , Células Progenitoras Mieloides/metabolismo , Neoplasias/imunologia , Antraciclinas/farmacologia , Antraquinonas/farmacologia , Antígenos CD34/metabolismo , Antineoplásicos/farmacologia , Diferenciação Celular , Linhagem Celular , Quimiocina CCL19/metabolismo , Quimiocina CCL21/metabolismo , Citostáticos/farmacologia , Células Dendríticas/imunologia , Células Dendríticas/patologia , Células Dendríticas/transplante , Humanos , Imunidade Celular , Receptores de Lipopolissacarídeos/metabolismo , Células Progenitoras Mieloides/imunologia , Células Progenitoras Mieloides/patologia , Neoplasias/terapia
16.
Drug Metab Dispos ; 39(12): 2395-402, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21878559

RESUMO

Transporters located on the sinusoidal and canalicular membranes of hepatocytes regulate the efflux of drugs and metabolites into blood and bile, respectively. Changes in the expression or function of these transporters during liver disease may lead to a greater risk of adverse drug reactions. Nonalcoholic fatty liver disease (NAFLD) is a progressive condition encompassing the relatively benign steatosis and the more severe, inflammatory state of nonalcoholic steatohepatitis (NASH). Here, we present an analysis of the effect of NAFLD progression on the major ATP-binding cassette (ABC) efflux transport proteins ABCC1-6, ABCB1, and ABCG2. Human liver samples diagnosed as normal, steatotic, NASH (fatty), and NASH (not fatty) were analyzed. Increasing trends in mRNA expression of ABCC1, ABCC4-5, ABCB1, and ABCG2 were found with NAFLD progression, whereas protein levels of all transporters exhibited increasing trends with disease progression. Immunohistochemical staining of ABCC3, ABCB1, and ABCG2 revealed no alterations in cellular localization during NAFLD progression. ABCC2 staining revealed an alternative mechanism of regulation in NASH in which the transporter appears to be internalized away from the canalicular membrane. This correlated with a preferential shift in the molecular mass of ABCC2 from 200 to 180 kDa in NASH, which has been shown to be associated with a loss of glycosylation and internalization of the protein. These data demonstrate increased expression of multiple efflux transporters as well as altered cellular localization of ABCC2 in NASH, which may have profound effects on the ability of patients with NASH to eliminate drugs in an appropriate manner.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Fígado Gorduroso/metabolismo , Progressão da Doença , Humanos , Proteína 2 Associada à Farmacorresistência Múltipla , Hepatopatia Gordurosa não Alcoólica
17.
Cancer Immunol Immunother ; 60(7): 943-51, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21431918

RESUMO

As neoadjuvant and adjuvant chemotherapy schedules often consist of multiple treatment cycles over relatively long periods of time, it is important to know what effects protracted drug administration can have on the immune system. Here, we studied the long-term effects of doxorubicin on the capacity of dendritic cell (DC) precursors to differentiate into a particular DC subset, the Langerhans cells (LC). In order to achieve high telomerase activity as detected in hematological stem cells, precursor cells from the acute-myeloid leukemia (AML)-derived cell line MUTZ3 were stably transduced with human telomerase reverse transcriptase (hTERT) to facilitate their growth potential, while preventing growth, and drug-induced senescence, and preserving their unique capacity for cytokine-dependent DC and LC differentiation. The hTERT-MUTZ3 cells were selected with increasing concentrations of the anthracyclin doxorubicin. After 1-2 months of selection with 30-90 nM doxorubicin, the cells completely lost their capacity to differentiate into LC. This inhibition turned out to be reversible, as the cells slowly regained their capacity to differentiate after a 3- to 4-month drug-free period and with this became capable again of priming allogeneic T cells. Of note, the loss and gain of this capacity to differentiate coincided with the loss and gain of a subpopulation within the CD34(+) proliferative compartment with surface expression of the stem cell factor receptor (SCF-R/CD117/c-Kit). These data are in favor of cytostatic drug-free intervals before applying autologous DC-based vaccination protocols, as specific DC precursors may need time to recover from protracted chemotherapy treatment and re-emerge among the circulating CD34(+) hematopoietic stem and precursor cells.


Assuntos
Antígenos CD34/metabolismo , Diferenciação Celular , Doxorrubicina/farmacologia , Células-Tronco Hematopoéticas/citologia , Células de Langerhans/citologia , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Proteínas Proto-Oncogênicas c-kit/metabolismo , Antibióticos Antineoplásicos/farmacologia , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Modelos Biológicos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telomerase/genética , Telomerase/metabolismo
18.
Pharmacogenomics ; 12(2): 159-70, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21332310

RESUMO

AIMS: The current study investigates whether or not functional polymorphisms in the ATP-binding cassette transporter gene ABCG2 might affect gefitinib activity and/or toxicity in non-small-cell lung cancer (NSCLC) patients. MATERIALS & METHODS: Towards this end, ABCG2 polymorphisms and expression were assessed in DNA and tumors from 94 NSCLC patients treated with gefitinib, whereas their associations with toxicity/response and time-to-progression/overall survival were evaluated using Pearson-χ(2) and log-rank-test, respectively. RESULTS: Patients carrying an ABCG2 -15622T/T genotype or harboring at least one TT copy in the ABCG2 (1143C/T, -15622C/T) haplotype developed significantly more grade 2/3 diarrhea (p < 0.01). No associations were found between polymorphisms and outcome. Consistently, ABCG2 protein levels in tumors were not significantly different between patients harboring different ABCG2 variants. CONCLUSION: The ABCG2 -15622C/T polymorphism and ABCG2 (1143C/T, -15622C/T) haplotype resulted in a gefitinib-dependent, moderate-to-severe diarrhea suggesting that these pharmacogenetic markers should be considered to optimize NSCLC treatment.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Antineoplásicos/efeitos adversos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Diarreia/induzido quimicamente , Diarreia/genética , Neoplasias Pulmonares/tratamento farmacológico , Proteínas de Neoplasias/genética , Quinazolinas/efeitos adversos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Antineoplásicos/uso terapêutico , Feminino , Gefitinibe , Estudo de Associação Genômica Ampla , Genótipo , Haplótipos/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo Genético/genética , Medicina de Precisão , Quinazolinas/uso terapêutico , Resultado do Tratamento
19.
J Antimicrob Chemother ; 65(8): 1672-80, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20551216

RESUMO

OBJECTIVES: A possible mechanism for HIV therapy failure is the efflux of HIV drugs from viral target cells or certain body compartments by ATP-binding cassette (ABC) transporters, allowing ongoing viral replication. Here, we investigated the interaction between protease inhibitors (PIs) and ABC transporters. METHODS: To explore the potential blocking capacity of PIs, we exposed cells overexpressing multidrug resistance 1 P-glycoprotein (MDR1 P-gp), multidrug resistance protein 1 (MRP1) and breast cancer resistance protein (BCRP) to established cytotoxic substrates with or without one of the PIs atazanavir, lopinavir or ritonavir. Furthermore, to assess whether PIs serve as substrates, cell growth-inhibitory effects of these PIs were evaluated on cells overexpressing 1 of 11 ABC transporters and their parental counterparts. RESULTS: Atazanavir, lopinavir and ritonavir were highly effective in reversing resistance against established substrates in cells overexpressing MDR1 P-gp and MRP1, and, to a lesser extent, BCRP. Concurrently, however, PIs appeared to be relatively poor substrates for ABC transporters. Only a moderate level of resistance to atazanavir was observed in cells overexpressing MRP6 and MRP9 [resistance factor (RF): 2.0-2.6]. Cells overexpressing MDR1 P-gp, MRP3, MRP4 and MRP5 displayed low levels of resistance to atazanavir (RF: 1.3-1.7); MRP7- and MRP9-overexpressing cells to lopinavir (RF: 1.4-1.5); and MRP9-overexpressing cells to ritonavir (RF: 1.4). CONCLUSIONS: PIs can act as potent blockers of MDR1 P-gp, MRP1 and BCRP, but they are poor substrates for 11 ABC transporters. Consequently, ABC transporters are unlikely to play a major role in PI failure, but still may contribute to drug-specific adverse events and drug-drug interactions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Inibidores da Protease de HIV/metabolismo , Oligopeptídeos/metabolismo , Piridinas/metabolismo , Pirimidinonas/metabolismo , Ritonavir/metabolismo , Sulfato de Atazanavir , Linhagem Celular , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Humanos , Lopinavir
20.
J Immunother ; 32(9): 895-906, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19816192

RESUMO

In vivo targeting of dendritic cells (DC) represents an attractive alternative to currently apply ex vivo DC-based genetic tumor vaccination protocols. Finding the optimal vector for in vivo targeting of DC is important for such strategies. We, therefore, tested a panel of subgroup C/B chimeric and fiber-modified adenoviruses (Ads) for their relative capacity to transduce human DC. We made use of in vitro generated Langerhans cells, and of ex vivo human skin and melanoma-draining lymph node derived DC. Of the tested viruses the C/B-chimeric adenovirus serotype 5 (Ad5)/3 virus most efficiently transduced in vitro generated Langerhans cells. In addition, Ad5/3 preferentially targeted mature myeloid DC from human skin and draining lymph node and transduced them at significantly higher frequencies than Ad5. In addition, Ad5/3 was more specific for mature human skin-derived CD1a+ CD83+ DC than the previously reported DC-transducing C/B-chimeric vector Ad5/35, infecting less bystander cells. It was previously reported that Ad5/3 transduced human monocyte-derived DC by binding to the B7 molecules CD80 and CD86. High-efficiency transduction of mature skin-derived DC was similarly shown to be mediated through binding to CD80/CD86 and not to interfere with subsequent T-cell priming. We conclude that Ad5/3, in combination with DC-activating adjuvants, represents a promising therapeutic tool for the in vivo transduction of mature DC, and may be less likely to induce unwanted side effects such as immune tolerance through the infection of nonprofessional antigen-presenting cells.


Assuntos
Adenoviridae/genética , Antígeno B7-1/imunologia , Antígeno B7-2/imunologia , Células Dendríticas/imunologia , Vetores Genéticos/genética , Transdução Genética , Antígeno B7-1/metabolismo , Antígeno B7-2/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Citocinas/biossíntese , Citocinas/imunologia , Células Dendríticas/virologia , Humanos , Linfonodos/imunologia , Linfonodos/virologia , Pele/imunologia , Pele/virologia , Transgenes/genética , Transgenes/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...