Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(6): e202300616, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38305754

RESUMO

Citrus canker, caused by the bacterium Xanthomonas citri subsp. citri, is one of the main threats to citrus fruit production. Several phenolic compounds active against X. citri have been described in recent years. Benzene-1,2,4-triol is a bio-based phenolic compound that has shown high potential as a scaffold for the synthesis of new anti-X. citri compounds. However, benzene-1,2,4-triol is prone to oxidative dimerization. We evaluated the antibacterial activity of benzene-1,2,4-triol, its oxidized dimers, and analogous compounds. Benzene-1,2,4-triol has a low inhibitory concentration against X. citri (0.05 mM) and is also active against other bacterial species. Spontaneous formation of benzenetriol dimers (e. g. by contact with oxygen in aqueous solution) reduced the antimicrobial activity of benzenetriol solutions. Dimers themselves displayed lower antibacterial activity and where shown to be more stable in solution. Unlike many other phenolic compounds with anti-X. citri activity, benzene-1,2,4-triol does not act by membrane permeabilization, but seems to limit the availability of iron to cells. Benzene-1,2,4-triol is widely recognized as toxic - our results indicate that the toxicity of benzene-1,2,4-triol is largely due to spontaneously formed dimers. Stabilization of benzene-1,2,4-triol will be required to allow the safe use of this compound.


Assuntos
Antibacterianos , Dimerização , Testes de Sensibilidade Microbiana , Xanthomonas , Xanthomonas/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Derivados de Benzeno/química , Derivados de Benzeno/farmacologia
2.
RSC Chem Biol ; 4(11): 884-893, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37920390

RESUMO

8-Azido-3,8-dideoxy-α/ß-d-manno-oct-2-ulosonic acid (Kdo-8-N3) is a Kdo derivative used in metabolic labeling of lipopolysaccharide (LPS) structures found on the cell membrane of Gram-negative bacteria. Several studies have reported successful labeling of LPS using Kdo-8-N3 and visualization of LPS by a fluorescent reagent through click chemistry on a selection of Gram-negative bacteria such as Escherichia coli strains, Salmonella typhimurium, and Myxococcus xanthus. Motivated by the promise of Kdo-8-N3 to be useful in the investigation of LPS biosynthesis and cell surface labeling across different strains, we set out to explore the variability in nature and efficiency of LPS labeling using Kdo-8-N3 in a variety of E. coli strains and serotypes. We optimized the chemical synthesis of Kdo-8-N3 and subsequently used Kdo-8-N3 to metabolically label pathogenic E. coli strains from commercial and clinical origin. Interestingly, different extents of labeling were observed in different E. coli strains, which seemed to be dependent also on growth media, and the majority of labeled LPS appears to be of the 'rough' LPS variant, as visualized using SDS-PAGE and fluorescence microscopy. This knowledge is important for future application of Kdo-8-N3 in the study of LPS biosynthesis and dynamics, especially when working with clinical isolates.

3.
Mol Microbiol ; 120(4): 490-501, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37243899

RESUMO

In every bacterial cell, the plasma membrane plays a key role in viability as it forms a selective barrier between the inside of the cell and its environment. This barrier function depends on the physical state of the lipid bilayer and the proteins embedded or associated with the bilayer. Over the past decade or so, it has become apparent that many membrane-organizing proteins and principles, which were described in eukaryote systems, are ubiquitous and play important roles in bacterial cells. In this minireview, we focus on the enigmatic roles of bacterial flotillins in membrane compartmentalization and bacterial dynamins and ESCRT-like systems in membrane repair and remodeling.

4.
ChemMedChem ; 16(19): 3060-3070, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34181818

RESUMO

The rise of antimicrobial resistance has necessitated novel strategies to efficiently combat pathogenic bacteria. Metal-based compounds have been proven as a possible alternative to classical organic drugs. Here, we have assessed the antibacterial activity of seven gold complexes of different families. One compound, a cyclometalated Au(III) C^N complex, showed activity against Gram-positive bacteria, including multi-drug resistant clinical strains. The mechanism of action of this compound was studied in Bacillus subtilis. Overall, the studies point towards a complex mode of antibacterial action, which does not include induction of oxidative stress or cell membrane damage. A number of genes related to metal transport and homeostasis were upregulated upon short treatment of the cells with gold compound. Toxicity tests conducted on precision-cut mouse tissue slices ex vivo revealed that the organogold compound is poorly toxic to mouse liver and kidney tissues, and may thus, be treated as an antibacterial drug candidate.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Positivas/efeitos dos fármacos , Compostos Organoáuricos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos Organoáuricos/síntese química , Compostos Organoáuricos/química , Relação Estrutura-Atividade
5.
Molecules ; 26(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800893

RESUMO

In order to replace the huge amounts of copper salts used in citrus orchards, alternatives have been sought in the form of organic compounds of natural origin with activity against the causative agent of citrus canker, the phytopathogen Xanthomonas citri subsp. Citri. We synthesized a series of 4-alkoxy-1,2-benzene diols (alkyl-BDOs) using 1,2,4-benzenetriol (BTO) as a starting material through a three-step synthesis route and evaluated their suitability as antibacterial compounds. Our results show that alkyl ethers derived from 1,2,4-benzenetriol have bactericidal activity against X. citri, disrupting the bacterial cell membrane within 15 min. Alkyl-BDOs were also shown to remain active against the bacteria while in solution, and presented low toxicity to (human) MRC-5 cells. Therefore, we have demonstrated that 1,2,4-benzenetriol-a molecule that can be obtained from agricultural residues-is an adequate precursor for the synthesis of new compounds with activity against X. citri.


Assuntos
Antibacterianos/farmacologia , Derivados de Benzeno/farmacologia , Citrus/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Doenças das Plantas/microbiologia , Folhas de Planta/efeitos dos fármacos , Xanthomonas/patogenicidade , Antibacterianos/química , Derivados de Benzeno/química , Proliferação de Células , Citrus/microbiologia , Fibroblastos/citologia , Humanos , Folhas de Planta/microbiologia
6.
Bioorg Chem ; 109: 104668, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33601139

RESUMO

Curcumin (CUR) is a symmetrical dicarbonyl compound with antibacterial activity. On the other hand, pharmacokinetic and chemical stability limitations hinder its therapeutic application. Monocarbonyl analogs of curcumin (MACs) have been shown to overcome these barriers. We synthesized and investigated the antibacterial activity of a series of unsymmetrical MACs derived from acetone against Mycobacterium tuberculosis and Gram-negative and Gram-positive species. Phenolic MACs 4, 6 and 8 showed a broad spectrum and potent activity, mainly against M. tuberculosis, Acinetobacter baumannii and methicillin-resistant Staphylococcus aureus (MRSA), with MIC (minimum inhibitory concentration) values ranging from 0.9 to 15.6 µg/mL. The investigation regarding toxicity on human lung cells (MRC-5 and A549 lines) revealed MAC 4 was more selective than MACs 6 and 8, with SI (selectivity index) values ranging from 5.4 to 15.6. In addition, MAC 4 did not demonstrate genotoxic effects on A549 cells and it was more stable than CUR in phosphate buffer (pH 7.4) for 24 h at 37 °C. Fluorescence and phase contrast microscopies indicated that MAC 4 has the ability to disrupt the divisome of Bacillus subtilis without damaging its cytoplasmic membrane. However, biochemical investigations demonstrated that MAC 4 did not affect the GTPase activity of B. subtilis FtsZ, which is the main constituent of the bacterial divisome. These results corroborated that MAC 4 is a promising antitubercular and antibacterial agent.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Curcumina/análogos & derivados , Curcumina/farmacologia , Bacillus subtilis/efeitos dos fármacos , Linhagem Celular , Curcumina/química , Desenho de Fármacos , Desenvolvimento de Medicamentos , Humanos , Pulmão/citologia , Estrutura Molecular
7.
Curr Issues Mol Biol ; 41: 539-596, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33048060

RESUMO

The cell wall of Bacillus subtilis is a rigid structure on the outside of the cell that forms the first barrier between the bacterium and the environment, and at the same time maintains cell shape and withstands the pressure generated by the cell's turgor. In this review, the chemical composition of peptidoglycan, teichoic and teichuronic acids, the polymers that comprise the cell wall, and the biosynthetic pathways involved in their synthesis will be discussed, as well as the architecture of the cell wall. B. subtilis has been the first bacterium for which the role of an actin-like cytoskeleton in cell shape determination and peptidoglycan synthesis was identified and for which the entire set of peptidoglycan synthesizing enzymes has been localised. The role of the cytoskeleton in shape generation and maintenance will be discussed and results from other model organisms will be compared to what is known for B. subtilis. Finally, outstanding questions in the field of cell wall synthesis will be discussed.


Assuntos
Bacillus subtilis/metabolismo , Bacillus subtilis/fisiologia , Parede Celular/metabolismo , Parede Celular/fisiologia , Vias Biossintéticas/fisiologia , Citoesqueleto/metabolismo , Citoesqueleto/fisiologia , Peptidoglicano/metabolismo , Ácidos Urônicos/metabolismo
8.
Molecules ; 25(20)2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33050236

RESUMO

Xanthomonas citri subsp. citri (X. citri) is an important phytopathogen and causes Asiatic Citrus Canker (ACC). To control ACC, copper sprays are commonly used. As copper is an environmentally damaging heavy metal, new antimicrobials are needed to combat citrus canker. Here, we explored the antimicrobial activity of chalcones, specifically the methoxychalcone BC1 and the hydroxychalcone T9A, against X. citri and the model organism Bacillus subtilis. BC1 and T9A prevented growth of X. citri and B. subtilis in concentrations varying from 20 µg/mL to 40 µg/mL. BC1 and T9A decreased incorporation of radiolabeled precursors of DNA, RNA, protein, and peptidoglycan in X. citri and B. subtilis. Both compounds mildly affected respiratory activity in X. citri, but T9A strongly decreased respiratory activity in B. subtilis. In line with that finding, intracellular ATP decreased strongly in B. subtilis upon T9A treatment, whereas BC1 increased intracellular ATP. In X. citri, both compounds resulted in a decrease in intracellular ATP. Cell division seems not to be affected in X. citri, and, although in B. subtilis the formation of FtsZ-rings is affected, a FtsZ GTPase activity assay suggests that this is an indirect effect. The chalcones studied here represent a sustainable alternative to copper for the control of ACC, and further studies are ongoing to elucidate their precise modes of action.


Assuntos
Antibacterianos/farmacologia , Chalconas/farmacologia , Doenças das Plantas/microbiologia , Xanthomonas/patogenicidade , Antibacterianos/química , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/patogenicidade , Chalconas/química
9.
Appl Environ Microbiol ; 86(24)2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-32978140

RESUMO

Nonribosomal peptides (NRPs) are a class of secondary metabolites usually produced by microorganisms. They are of paramount importance in different applications, including biocontrol and pharmacy. Brevibacillus spp. are a rich source of NRPs yet have received little attention. In this study, we characterize four novel bogorol variants (bogorols I to L, cationic linear lipopeptides) and four succilins (succilins I to L, containing a succinyl group that is attached to the Orn3/Lys3 in bogorols I to L) from the biocontrol strain Brevibacillus laterosporus MG64. Further investigation revealed that the bogorol family of peptides employs an adenylation pathway for lipoinitiation, different from the usual pattern, which is based on an external ligase and coenzyme A. Moreover, the formation of valinol was proven to be mediated by a terminal reductase domain and a reductase encoded by the bogI gene. Furthermore, succinylation, which is a novel type of modification in the family of bogorols, was discovered. Its occurrence requires a high concentration of the substrate (bogorols), but its responsible enzyme remains unknown. Bogorols display potent activity against both Gram-positive and Gram-negative bacteria. Investigation of their mode of action reveals that bogorols form pores in the cell membrane of both Gram-positive and Gram-negative bacteria. The combination of bogorols and relacidines, another class of NRPs produced by B. laterosporus MG64, displays a synergistic effect on different pathogens, suggesting the great potential of both peptides as well as their producer B. laterosporus MG64 for broad applications. Our study provides a further understanding of the bogorol family of peptides as well as their applications.IMPORTANCE NRPs form a class of secondary metabolites with biocontrol and pharmaceutical potential. This work describes the identification of novel bogorol variants and succinylated bogorols (namely, succilins) and further investigates their biosynthetic pathway and mode of action. Adenylation domain-mediated lipoinitiation of bogorols represents a novel pathway by which NRPs incorporate fatty acid tails. This pathway provides the possibility to engineer the lipid tail of NRPs without identifying a fatty acid coenzyme ligase, which is usually not present in the biosynthetic gene cluster. The terminal reductase domain (TD) and BogI-mediated valinol formation and their effect on the biological activity of bogorols are revealed. Succinylation, which is rarely reported in NRPs, was discovered in the bogorol family of peptides. We demonstrate that bogorols combat bacterial pathogens by forming pores in the cell membrane. We also report the synergistic effect of two natural products (relacidine B and bogorol K) produced by the same strain, which is relevant for competition for a niche.


Assuntos
Antibacterianos/farmacologia , Brevibacillus/genética , Lipopeptídeos/genética , Brevibacillus/metabolismo , Lipopeptídeos/metabolismo , Lipopeptídeos/farmacologia , Testes de Sensibilidade Microbiana
10.
Microbiology (Reading) ; 166(9): 826-836, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32749956

RESUMO

Bacterial cell division is mediated by a protein complex known as the divisome. Many protein-protein interactions in the divisome have been characterized. In this report, we analyse the role of the PASTA (Penicillin-binding protein And Serine Threonine kinase Associated) domains of Bacillus subtilis PBP2B. PBP2B itself is essential and cannot be deleted, but removing the PBP2B PASTA domains results in impaired cell division and a heat-sensitive phenotype. This resembles the deletion of divIB, a known interaction partner of PBP2B. Bacterial two-hybrid and co-immunoprecipitation analyses show that the interaction between PBP2B and DivIB is weakened when the PBP2B PASTA domains are removed. Combined, our results show that the PBP2B PASTA domains are required to strengthen the interaction between PBP2B and DivIB.


Assuntos
Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Ligação às Penicilinas/química , Proteínas de Ligação às Penicilinas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Peptidil Transferases/química , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Temperatura
11.
Elife ; 92020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32662773

RESUMO

The bacterial plasma membrane is an important cellular compartment. In recent years it has become obvious that protein complexes and lipids are not uniformly distributed within membranes. Current hypotheses suggest that flotillin proteins are required for the formation of complexes of membrane proteins including cell-wall synthetic proteins. We show here that bacterial flotillins are important factors for membrane fluidity homeostasis. Loss of flotillins leads to a decrease in membrane fluidity that in turn leads to alterations in MreB dynamics and, as a consequence, in peptidoglycan synthesis. These alterations are reverted when membrane fluidity is restored by a chemical fluidizer. In vitro, the addition of a flotillin increases membrane fluidity of liposomes. Our data support a model in which flotillins are required for direct control of membrane fluidity rather than for the formation of protein complexes via direct protein-protein interactions.


Every living cell is enclosed by a flexible membrane made of molecules known as phospholipids, which protects the cell from harmful chemicals and other threats. In bacteria and some other organisms, a rigid structure known as the cell wall sits just outside of the membrane and determines the cell's shape. There are several proteins in the membrane of bacteria that allow the cell to grow by assembling new pieces of the cell wall. To ensure these proteins expand the cell wall at the right locations, another protein known as MreB moves and organizes them to the appropriate place in the membrane and controls their activity. Previous studies have found that another class of proteins called flotillins are involved in arranging proteins and phospholipid molecules within membranes. Bacteria lacking these proteins do not grow properly and are unable to maintain their normal shape. However, the precise role of the flotillins remained unclear. Here, Zielinska, Savietto et al. used microscopy approaches to study flotillins in a bacterium known as Bacillus subtilis. The experiments found that, in the presence of flotillins, MreB moved around the membrane more quickly (suggesting it was more active) than when no flotillins were present. Similar results were observed when bacterial cells lacking flotillins were treated with a chemical that made membranes more 'fluid' ­ that is, made it easier for the molecules within the membrane to travel around. Further experiments found that flotillins allowed the phospholipid molecules within an artificial membrane to move around more freely, which increases the fluidity of the membrane. These findings suggest that flotillins make the membranes of bacterial cells more fluid to help cells expand their walls and perform several other processes. Understanding how bacteria control the components of their membranes will further our understanding of how many currently available antibiotics work and may potentially lead to the design of new antibiotics in the future.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Fluidez de Membrana/fisiologia , Proteínas de Membrana/metabolismo , Peptidoglicano/biossíntese
12.
Environ Microbiol ; 22(12): 5125-5136, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32608161

RESUMO

The development of sustainable agriculture and the increasing antibiotic resistance of human pathogens call for novel antimicrobial compounds. Here, we describe the extraction and characterization of a class of cationic circular lipopeptides, for which we propose the name relacidines, from the soil bacterium Brevibacillus laterosporus MG64. Relacidines are composed of a fatty acid side chain (4-methylhexanoic acid) and 13 amino acid residues. A lactone ring is formed by the last five amino acid residues and three positively charged ornithines are located in the linear fragment. Relacidines selectively combat Gram-negative pathogens, including phytopathogens and human pathogens. Further investigation of the mode of action revealed that relacidine B binds to the lipopolysaccharides but does not form pores in the cell membrane. We also provide proof to show that relacidine B does not affect the biosynthesis of the cell wall and RNA. Instead, it affects the oxidative phosphorylation process of cells and diminishes the biosynthesis of ATP. Transcription of relacidines is induced by plant pathogens, which strengthens the potential of B. laterosporus MG64 to be used as a biocontrol agent. Thus, we identified a new group of potent antibiotic compounds for combating Gram-negative pathogens of plants or animals.


Assuntos
Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Antibacterianos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Agentes de Controle Biológico/metabolismo , Brevibacillus/metabolismo , Bactérias Gram-Negativas/metabolismo , Lipopeptídeos/química , Lipopeptídeos/genética , Lipopeptídeos/metabolismo , Lipopolissacarídeos/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Peptídeos Cíclicos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Transcrição Gênica
13.
Bioorg Chem ; 90: 103031, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31238181

RESUMO

Curcumin is a plant diphenylheptanoid and has been investigated for its antibacterial activity. However, the therapeutic uses of this compound are limited due to its chemical instability. In this work, we evaluated the antimicrobial activity of diphenylheptanoids derived from curcumin against Gram-positive and Gram-negative bacteria, and also against Mycobacterium tuberculosis in terms of MIC (Minimum Inhibitory Concentration) and MBC (Minimum Bactericidal Concentration) values. 3,3'-Dihydroxycurcumin (DHC) displayed activity against Enterococcus faecalis, Staphylococcus aureus and M. tuberculosis, demonstrating MIC values of 78 and 156 µg/mL. In addition, DHC was more stable than curcumin in acetate buffer (pH 5.0) and phosphate buffer (pH 7.4) for 24 h at 37 °C. We proposed that membrane and the cell division protein FtsZ could be the targets for DHC due to that fact that curcumin exhibits this mode of antibacterial action. Fluorescence microscopy of Bacillus subtilis stained with SYTO9 and propidium iodide fluorophores indicated that DHC has the ability to perturb the bacterial membrane. On the other hand, DHC showed a weak inhibition of the GTPase activity of B. subtilis FtsZ. Toxicity assay using human cells indicated that DHC has moderate capacity to reduce viability of liver cells (HepG2 line) and lung cells (MRC-5 and A549 lines) when compared with doxorubicin. Alkaline comet assay indicated that DHC was not able to induce DNA damage in A549 cell line. These results indicated that DHC is promising compound with antibacterial and antitubercular activities.


Assuntos
Antituberculosos/farmacologia , Membrana Celular/efeitos dos fármacos , Curcumina/análogos & derivados , Curcumina/farmacologia , Antituberculosos/síntese química , Antituberculosos/toxicidade , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Linhagem Celular Tumoral , Curcumina/toxicidade , Proteínas do Citoesqueleto/antagonistas & inibidores , DNA/efeitos dos fármacos , Estabilidade de Medicamentos , GTP Fosfo-Hidrolases/antagonistas & inibidores , Humanos , Testes de Sensibilidade Microbiana
14.
Microbiologyopen ; 8(5): e00706, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30085414

RESUMO

Xanthomonas citri subsp. citri (Xac) is the causative agent of citrus canker, a plant disease that significantly impacts citriculture. In earlier work, we showed that alkylated derivatives of gallic acid have antibacterial action against Xac and target both the cell division protein FtsZ and membrane integrity in Bacillus subtilis. Here, we have purified native XacFtsZ and characterized its GTP hydrolysis and polymerization properties. In a surprising manner, inhibition of XacFtsZ activity by alkyl gallates is not as strong as observed earlier with B. subtilis FtsZ. As the alkyl gallates efficiently permeabilize Xac membranes, we propose that this is the primary mode of antibacterial action of these compounds.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Proteínas do Citoesqueleto/isolamento & purificação , Proteínas do Citoesqueleto/metabolismo , Xanthomonas/enzimologia , Antibacterianos/farmacologia , Membrana Celular/efeitos dos fármacos , Citrus/microbiologia , Inibidores Enzimáticos/metabolismo , Ácido Gálico/farmacologia , Guanosina Trifosfato/metabolismo , Hidrólise , Doenças das Plantas/microbiologia , Multimerização Proteica , Xanthomonas/efeitos dos fármacos
15.
Microbiologyopen ; 8(4): e00683, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30051597

RESUMO

Curcumin is the main constituent of turmeric, a seasoning popularized around the world with Indian cuisine. Among the benefits attributed to curcumin are anti-inflammatory, antimicrobial, antitumoral, and chemopreventive effects. Besides, curcumin inhibits the growth of the gram-positive bacterium Bacillus subtilis. The anti-B. subtilis action happens by interference with the division protein FtsZ, an ancestral tubulin widespread in Bacteria. FtsZ forms protofilaments in a GTP-dependent manner, with the concomitant recruitment of essential factors to operate cell division. By stimulating the GTPase activity of FtsZ, curcumin destabilizes its function. Recently, curcumin was shown to promote membrane permeabilization in B. subtilis. Here, we used molecular simplification to dissect the functionalities of curcumin. A simplified form, in which a monocarbonyl group substituted the ß-diketone moiety, showed antibacterial action against gram-positive and gram-negative bacteria of clinical interest. The simplified curcumin also disrupted the divisional septum of B. subtilis; however, subsequent biochemical analysis did not support a direct action on FtsZ. Our results suggest that the simplified curcumin exerted its function mainly through membrane permeabilization, with disruption of the membrane potential necessary for FtsZ intra-cellular localization. Finally, we show here experimental evidence for the requirement of the ß-diketone group of curcumin for its interaction with FtsZ.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Curcumina/farmacologia , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Testes de Sensibilidade Microbiana
16.
Int J Mol Sci ; 19(10)2018 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301234

RESUMO

Xanthomonas citri subsp. citri (Xcc) causes citrus canker, affecting sweet orange-producing areas around the world. The current chemical treatment available for this disease is based on cupric compounds. For this reason, the objective of this study was to design antibacterial agents. In order to do this, we analyzed the anti-Xcc activity of 36 alkyl dihydroxybenzoates and we found 14 active compounds. Among them, three esters with the lowest minimum inhibitory concentration values were selected; compounds 4 (52 µM), 16 (80 µM) and 28 (88 µM). Our study demonstrated that alkyl dihydroxybenzoates cause a delay in the exponential phase. The permeability capacity of alkyl dihydroxybenzoates in a quarter of MIC was compared to nisin (positive control). Compound 28 was the most effective (93.8), compared to compound 16 (41.3) and compound 4 (13.9) by percentage values. Finally, all three compounds showed inhibition of FtsZ GTPase activity, and promoted changes in protofilaments, leading to depolymerization, which prevents bacterial cell division. In conclusion, heptyl dihydroxybenzoates (compounds 4, 16 and 28) are promising anti-Xcc agents which may serve as an alternative for the control of citrus canker.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Desenho de Fármacos , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Xanthomonas/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/isolamento & purificação , Permeabilidade da Membrana Celular/efeitos dos fármacos , GTP Fosfo-Hidrolases/antagonistas & inibidores , Hidroxibenzoatos/síntese química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Doenças das Plantas/microbiologia
17.
Arch Microbiol ; 200(6): 929-937, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29525827

RESUMO

Asiatic citrus canker (ACC) is an incurable disease of citrus plants caused by the Gram-negative bacterium Xanthomonas citri subsp. citri (X. citri). It affects all the commercially important citrus varieties in the major orange producing areas around the world. Control of the pathogen requires recurrent sprays of copper formulations that accumulate in soil and water reservoirs. Here, we describe the improvement of the alkyl gallates, which are potent anti-X. citri compounds, intended to be used as alternatives to copper in the control of ACC. Acetylation of alkyl gallates increased their lipophilicity, which resulted in potentiation of the antibacterial activity. X. citri exposed to the acetylated compounds exhibited increased cell length that is consistent with the disruption of the cell division apparatus. Finally, we show that inhibition of cell division is an indirect effect that seemed to be caused by membrane permeabilization, which is apparently the primary target of the acetylated alkyl gallates.


Assuntos
Antibacterianos/farmacologia , Citrus/microbiologia , Doenças das Plantas/microbiologia , Xanthomonas/efeitos dos fármacos , Doenças das Plantas/prevenção & controle , Xanthomonas/crescimento & desenvolvimento
18.
Front Microbiol ; 8: 1352, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28769912

RESUMO

Xanthomonas citri (Xac) is the causal agent of citrus canker, a disease that affects citrus crops and causes economic impact worldwide. To further characterize cell division in this plant pathogen, we investigated the role of the protein MinC in cell division, chromosome segregation, and peptidoglycan incorporation by deleting the gene minC using allele exchange. Xac with minC deleted exhibited the classic Δmin phenotype observed in other bacteria deleted for min components: minicells and short filamentation. In addition we noticed the formation of branches, which is similar to what was previously described for Escherichia coli deleted for either min or for several low molecular weight penicillin-binding proteins (PBPs). The branching phenotype was medium dependent and probably linked to gluconeogenic growth. We complemented the minC gene by integrating gfp-minC into the amy locus. Xac complemented strains displayed a wild-type phenotype. In addition, GFP-MinC oscillated from pole to pole, similar to MinCD oscillations observed in E. coli and more recently in Synechococcus elongatus. Further investigation of the branching phenotype revealed that in branching cells nucleoid organization, divisome formation and peptidoglycan incorporation were disrupted.

19.
PLoS One ; 12(3): e0174713, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28358838

RESUMO

SpoIIE is a bifunctional protein involved in asymmetric septum formation and in activation of the forespore compartment-specific transcription factor σF through dephosphorylation of SpoIIAA-P. The phosphatase activity of SpoIIE requires Mn2+ as a metal cofactor. Here, we show that the presence of a metal cofactor also influences SpoIIE oligomerization and asymmetric septum formation. Absence of Mn2+ from sporulation medium results in a delay of the formation of polar FtsZ-rings, similar to a spoIIE null mutant. We purified the entire cytoplasmic part of the SpoIIE protein, and show that the protein copurifies with bound metals. Metal binding both stimulates SpoIIE oligomerization, and results in the formation of larger oligomeric structures. The presence of SpoIIE oligomers reduces FtsZ GTP hydrolysis activity and stabilizes FtsZ polymers in a light scattering assay. Combined, these results indicate that metal binding is not just required for SpoIIE phosphatase activity but also is important for SpoIIE's role in asymmetric septum formation.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/química , Divisão Celular/genética , Proteínas do Citoesqueleto/química , Bacillus subtilis/química , Proteínas de Bactérias/genética , Divisão Celular/efeitos dos fármacos , Proteínas do Citoesqueleto/genética , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Hidrólise , Manganês/química , Metais , Multimerização Proteica/efeitos dos fármacos , Esporos Bacterianos/química , Esporos Bacterianos/genética
20.
Mol Microbiol ; 104(2): 319-333, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28118510

RESUMO

Peptidoglycan (PG), the major component of the bacterial cell wall, is one large macromolecule. To allow for the different curvatures of PG at cell poles and division sites, there must be local differences in PG architecture and eventually also chemistry. Here we report such local differences in the Gram-positive rod-shaped model organism Bacillus subtilis. Single-cell analysis after antibiotic treatment and labeling of the cell wall with a fluorescent analogue of vancomycin or the fluorescent D-amino acid analogue (FDAA) HCC-amino-D-alanine revealed that PG at the septum contains muropeptides with unprocessed stem peptides (pentapeptides). Whereas these pentapeptides are normally shortened after incorporation into PG, this activity is reduced at division sites indicating either a lower local degree of PG crosslinking or a difference in PG composition, which could be a topological marker for other proteins. The pentapeptides remain partially unprocessed after division when they form the new pole of a cell. The accumulation of unprocessed PG at the division site is not caused by the activity of the cell division specific penicillin-binding protein 2B. To our knowledge, this is the first indication of local differences in the chemical composition of PG in Gram-positive bacteria.


Assuntos
Peptidoglicano/química , Peptidoglicano/metabolismo , Sequência de Aminoácidos , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Divisão Celular , Parede Celular/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo , Análise de Célula Única , Vancomicina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA