Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 118(3): 607-625, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38361340

RESUMO

The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.


Assuntos
Regulação da Expressão Gênica de Plantas , Medicago truncatula , Proteínas de Plantas , Raízes de Plantas , Nódulos Radiculares de Plantas , Medicago truncatula/genética , Medicago truncatula/crescimento & desenvolvimento , Medicago truncatula/metabolismo , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/crescimento & desenvolvimento , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Nodulação/genética , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/efeitos dos fármacos , Peptídeos/metabolismo , Peptídeos/genética
2.
Physiol Plant ; 175(5): e14008, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37882269

RESUMO

Stomata are crucial for gas exchange and water evaporation, and environmental stimuli influence their density (SD) and size (SS). Although genes and mechanisms underlying stomatal development have been elucidated, stress-responsive regulators of SD and SS are less well-known. Previous studies have shown that the stress-inducible Brachypodium RFS (REGULATOR OF FLOWERING AND STRESS, BdRFS) gene affects heading time and enhances drought tolerance by reducing leaf water loss. Here, we report that overexpression lines (OXs) of BdRFS have reduced SD and increased SS, regardless of soil water status. Furthermore, biomass and plant water content of OXs were significantly increased compared to wild type. CRISPR/Cas9-mediated BdRFS knockout mutant (KO) exhibited the opposite stomatal characteristics and biomass changes. Reverse transcription-quantitative polymerase chain reaction analysis revealed that expression of BdICE1 was reversely altered in OXs and KO, pointing to a potential cause for the observed changes in stomatal phenotypes. Stomatal and transcriptional changes were not observed in the Arabidopsis rfs double mutant. Taken together, RFS is a novel regulator of SD and SS and is a promising candidate for genetic engineering of climate-resilient crops.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Brachypodium/genética , Brachypodium/metabolismo , Estômatos de Plantas/genética , Estômatos de Plantas/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Plantas Geneticamente Modificadas/genética , Água/metabolismo , Secas , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
3.
J Exp Bot ; 74(6): 2083-2111, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36629302

RESUMO

Phosphorus (P) limitation in the majority of world soils is a major constraint for plant growth and crop productivity. RNA sequencing was used to discover novel P-responsive gene transcripts (PRGTs) in leaves and roots of Arabidopsis. Hisat StringTie and the Cufflinks TopHat transcript assembler were used to analyze reads and identify 1074 PRGTs with a >5-fold altered abundance during P limitation. Interestingly, 60% of these transcripts were not previously reported. Among the novel PRGTs, 106 were from unannotated genes, and some were among the most P-responsive, including At2g36727 which encodes a novel miRNA. Annotated novel PRGTs encode transcription factors, miRNAs, small signaling peptides, long non-coding RNAs, defense-related proteins, and transporters, along with proteins involved in many biological processes. We identified several genes that undergo alternative splicing during P limitation, including a novel miR399-resistant splice variant of PHOSPHATE2 (PHO2.2). Several novel P-responsive genes were regulated by PHOSPHATE STARVATION RESPONSE1 (PHR1), PHR1-LIKE 1 (PHL1), and PHO2. We discovered that P-limited plants show increased resistance to pathogens and drought stress mediated by PHR1-PHL1. Identification of novel P-responsive transcripts and the discovery of the influence of P limitation on biotic and abiotic stress adds a significant component to our understanding of plant P signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fósforo/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fosfatos/metabolismo , Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol ; 191(1): 643-659, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36264121

RESUMO

To cope with environmental stresses and ensure maximal reproductive success, plants have developed strategies to adjust the timing of their transition to reproductive growth. This has a substantial impact on the stress resilience of crops and ultimately on agricultural productivity. Here, we report a previously uncharacterized, plant-specific gene family designated as Regulator of Flowering and Stress (RFS). Overexpression of the BdRFS gene in Brachypodium distachyon delayed flowering, increased biomass accumulation, and promoted drought tolerance, whereas clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated knockout mutants exhibited opposite phenotypes. A double T-DNA insertional mutant in the two Arabidopsis (Arabidopsis thaliana) homologs replicated the effects on flowering and water deprivation seen in the B. distachyon CRISPR knockout lines, highlighting the functional conservation of the family between monocots and dicots. Lipid analysis of B. distachyon and Arabidopsis revealed that digalactosyldiacylglycerol (DGDG) and phosphatidylcholine (PC) contents were significantly, and reciprocally, altered in overexpressor and knockout mutants. Importantly, alteration of C16:0-containing PC, a Flowering Locus T-interacting lipid, associated with flowering phenotype, with elevated levels corresponding to earlier flowering. Co-immunoprecipitation analysis suggested that BdRFS interacts with phospholipase Dα1 as well as several other abscisic acid-related proteins. Furthermore, reduction of C18:3 fatty acids in DGDG corresponded with reduced jasmonic acid metabolites in CRISPR mutants. Collectively, we suggest that stress-inducible RFS proteins represent a regulatory component of lipid metabolism that impacts several agronomic traits of biotechnological importance.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Brachypodium , Arabidopsis/metabolismo , Brachypodium/metabolismo , Resistência à Seca , Proteínas de Choque Térmico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lipídeos , Regulação da Expressão Gênica de Plantas
5.
Plant Cell Environ ; 45(6): 1796-1812, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35312071

RESUMO

Domain of Unknown Function 506 proteins are ubiquitous in plants. The phosphorus (P) stress-inducible REPRESSOR OF EXCESSIVE ROOT HAIR GROWTH1 (AtRXR1) gene encodes the first characterized DUF506. AtRXR1 inhibits root hair elongation by interacting with RabD2c GTPase. However, functions of other P-responsive DUF506 genes are still missing. Here, we selected two additional P-inducible DUF506 genes for further investigation. The expression of both genes was induced by auxin. Under P-stress, At3g07350 gene expressed ubiquitously in seedlings, whereas At1g62420 (AtRXR3) expression was strongest in roots. AtRXR3 overexpressors and knockouts had shorter and longer root hairs, respectively. A functional AtRXR3-green fluorescent protein fusion localized to root epidermal cells. Chromatin immunoprecipitation and quantitative reverse-transcriptase-polymerase chain reaction revealed that AtRXR3 was transcriptionally activated by RSL4. Bimolecular fluorescence complementation and calmodulin (CaM)-binding assays showed that AtRXR3 interacted with CaM in the presence of Ca2+ . Moreover, cytosolic Ca2+ ([Ca2+ ]cyt ) oscillations in root hairs of rxr3 mutants exhibited elevated frequencies and dampened amplitudes compared to those of wild type. Thus, AtRXR3 is another DUF506 protein that attenuates P-limitation-induced root hair growth through mechanisms that involve RSL4 and interaction with CaM to modulate tip-focused [Ca2+ ]cyt oscillations.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sinalização do Cálcio , Calmodulina/genética , Calmodulina/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo
6.
Commun Biol ; 5(1): 227, 2022 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277578

RESUMO

The perennial native switchgrass adapts better than other plant species do to marginal soils with low plant-available nutrients, including those with low phosphorus (P) content. Switchgrass roots and their associated microorganisms can alter the pools of available P throughout the whole soil profile making predictions of P availability in situ challenging. Plant P homeostasis makes monitoring of P limitation via measurements of plant P content alone difficult to interpret. To address these challenges, we developed a machine-learning model trained with high accuracy using the leaf tissue chemical profile, rather than P content. By applying this learned model in field trials across two sites with contrasting extractable soil P, we observed that actual plant available P in soil was more similar than expected, suggesting that adaptations occurred to alleviate the apparent P constraint. These adaptations come at a metabolic cost to the plant that have consequences for feedstock chemical components and quality. We observed that other biochemical signatures of P limitation, such as decreased cellulose-to-lignin ratios, were apparent, indicating re-allocation of carbon resources may have contributed to increased P acquisition. Plant P allocation strategies also differed across sites, and these differences were correlated with the subsequent year's biomass yields.


Assuntos
Panicum , Fósforo , Nitrogênio/metabolismo , Nutrientes , Panicum/metabolismo , Fósforo/análise , Solo/química
7.
New Phytol ; 233(3): 1153-1171, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34775627

RESUMO

Root hairs (RHs) function in nutrient and water acquisition, root metabolite exudation, soil anchorage and plant-microbe interactions. Longer or more abundant RHs are potential breeding traits for developing crops that are more resource-use efficient and can improve soil health. While many genes are known to promote RH elongation, relatively little is known about genes and mechanisms that constrain RH growth. Here we demonstrate that a DOMAIN OF UNKNOWN FUNCTION 506 (DUF506) protein, AT3G25240, negatively regulates Arabidopsis thaliana RH growth. The AT3G25240 gene is strongly and specifically induced during phosphorus (P)-limitation. Mutants of this gene, which we call REPRESSOR OF EXCESSIVE ROOT HAIR ELONGATION 1 (RXR1), have much longer RHs, higher phosphate content and seedling biomass, while overexpression of the gene exhibits opposite phenotypes. Co-immunoprecipitation, pull-down and bimolecular fluorescence complementation (BiFC) analyses reveal that RXR1 physically interacts with a RabD2c GTPase in nucleus, and a rabd2c mutant phenocopies the rxr1 mutant. Furthermore, N-terminal variable region of RXR1 is crucial for inhibiting RH growth. Overexpression of a Brachypodium distachyon RXR1 homolog results in repression of RH elongation in Brachypodium. Taken together, our results reveal a novel DUF506-GTPase module with a prominent role in repression of plant RH elongation especially under P stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Raízes de Plantas/metabolismo
8.
Front Plant Sci ; 12: 685187, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220905

RESUMO

Virus-induced gene silencing (VIGS) is a rapid and powerful method to evaluate gene function, especially for species like hexaploid wheat that have large, redundant genomes and are difficult and time-consuming to transform. The Brome mosaic virus (BMV)-based VIGS vector is widely used in monocotyledonous species but not wheat. Here we report the establishment of a simple and effective VIGS procedure in bread wheat using BMVCP5, the most recently improved BMV silencing vector, and wheat genes PHYTOENE DESATURASE (TaPDS) and PHOSPHATE2 (TaPHO2) as targets. Time-course experiments revealed that smaller inserts (~100 nucleotides, nt) were more stable in BMVCP5 and conferred higher silencing efficiency and longer silencing duration, compared with larger inserts. When using a 100-nt insert and a novel coleoptile inoculation method, BMVCP5 induced extensive silencing of TaPDS transcript and a visible bleaching phenotype in the 2nd to 5th systemically-infected leaves from nine to at least 28 days post inoculation (dpi). For TaPHO2, the ability of BMVCP5 to simultaneously silence all three homoeologs was demonstrated. To investigate the feasibility of BMV VIGS in wheat roots, ectopically expressed enhanced GREEN FLUORESCENT PROTEIN (eGFP) in a transgenic wheat line was targeted for silencing. Silencing of eGFP fluorescence was observed in both the maturation and elongation zones of roots. BMVCP5 mediated significant silencing of eGFP and TaPHO2 mRNA expression in roots at 14 and 21 dpi, and TaPHO2 silencing led to the doubling of inorganic phosphate concentration in the 2nd through 4th systemic leaves. All 54 wheat cultivars screened were susceptible to BMV infection. BMVCP5-mediated TaPDS silencing resulted in the expected bleaching phenotype in all eight cultivars examined, and decreased TaPDS transcript was detected in all three cultivars examined. This BMVCP5 VIGS technology may serve as a rapid and effective functional genomics tool for high-throughput gene function studies in aerial and root tissues and in many wheat cultivars.

9.
Front Plant Sci ; 12: 628421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613609

RESUMO

The HapMap (haplotype map) projects have produced valuable genetic resources in life science research communities, allowing researchers to investigate sequence variations and conduct genome-wide association study (GWAS) analyses. A typical HapMap project may require sequencing hundreds, even thousands, of individual lines or accessions within a species. Due to limitations in current sequencing technology, the genotype values for some accessions cannot be clearly called. Additionally, allelic heterozygosity can be very high in some lines, causing genetic and sometimes phenotypic segregation in their descendants. Genetic and phenotypic segregation degrades the original accession's specificity and makes it difficult to distinguish one accession from another. Therefore, it is vitally important to determine and validate HapMap accessions before one conducts a GWAS analysis. However, to the best of our knowledge, there are no prior methodologies or tools that can readily distinguish or validate multiple accessions in a HapMap population. We devised a bioinformatics approach to distinguish multiple HapMap accessions using only a minimum number of genetic markers. First, we assign each candidate marker with a distinguishing score (DS), which measures its capability in distinguishing accessions. The DS score prioritizes those markers with higher percentages of homozygous genotypes (allele combinations), as they can be stably passed on to offspring. Next, we apply the "set-partitioning" concept to select optimal markers by recursively partitioning accession sets. Subsequently, we build a hierarchical decision tree in which a specific path represents the selected markers and the homogenous genotypes that can be used to distinguish one accession from others in the HapMap population. Based on these algorithms, we developed a web tool named MAD-HiDTree (Multiple Accession Distinguishment-Hierarchical Decision Tree), designed to analyze a user-input genotype matrix and construct a hierarchical decision tree. Using genetic marker data extracted from the Medicago truncatula HapMap population, we successfully constructed hierarchical decision trees by which the original 262 M. truncatula accessions could be efficiently distinguished. PCR experiments verified our proposed method, confirming that MAD-HiDTree can be used for the identification of a specific accession. MAD-HiDTree was developed in C/C++ in Linux. Both the source code and test data are publicly available at https://bioinfo.noble.org/MAD-HiDTree/.

10.
Front Plant Sci ; 12: 793145, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35046980

RESUMO

The root system of a plant provides vital functions including resource uptake, storage, and anchorage in soil. The uptake of macro-nutrients like nitrogen (N), phosphorus (P), potassium (K), and sulphur (S) from the soil is critical for plant growth and development. Small signaling peptide (SSP) hormones are best known as potent regulators of plant growth and development with a few also known to have specialized roles in macronutrient utilization. Here we describe a high throughput phenotyping platform for testing SSP effects on root uptake of multiple nutrients. The SSP, CEP1 (C-TERMINALLY ENCODED PEPTIDE) enhanced nitrate uptake rate per unit root length in Medicago truncatula plants deprived of N in the high-affinity transport range. Single structural variants of M. truncatula and Arabidopsis thaliana specific CEP1 peptides, MtCEP1D1:hyp4,11 and AtCEP1:hyp4,11, enhanced uptake not only of nitrate, but also phosphate and sulfate in both model plant species. Transcriptome analysis of Medicago roots treated with different MtCEP1 encoded peptide domains revealed that hundreds of genes respond to these peptides, including several nitrate transporters and a sulfate transporter that may mediate the uptake of these macronutrients downstream of CEP1 signaling. Likewise, several putative signaling pathway genes including LEUCINE-RICH REPEAT RECPTOR-LIKE KINASES and Myb domain containing transcription factors, were induced in roots by CEP1 treatment. Thus, a scalable method has been developed for screening synthetic peptides of potential use in agriculture, with CEP1 shown to be one such peptide.

11.
Plant Cell Environ ; 44(1): 186-202, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32822068

RESUMO

Knowing how switchgrass (Panicum virgatum L.) responds and adapts to phosphorus (P)-limitation will aid efforts to optimize P acquisition and use in this species for sustainable biomass production. This integrative study investigated the impacts of mild, moderate, and severe P-stress on genome transcription and whole-plant metabolism, physiology and development in switchgrass. P-limitation reduced overall plant growth, increased root/shoot ratio, increased root branching at moderate P-stress, and decreased root diameter with increased density and length of root hairs at severe P-stress. RNA-seq analysis revealed thousands of genes that were differentially expressed under moderate and severe P-stress in roots and/or shoots compared to P-replete plants, with many stress-induced genes involved in transcriptional and other forms of regulation, primary and secondary metabolism, transport, and other processes involved in P-acquisition and homeostasis. Amongst the latter were multiple miRNA399 genes and putative targets of these. Metabolite profiling showed that levels of most sugars and sugar alcohols decreased with increasing P stress, while organic and amino acids increased under mild and moderate P-stress in shoots and roots, although this trend reversed under severe P-stress, especially in shoots.


Assuntos
Panicum/metabolismo , Fósforo/deficiência , Perfilação da Expressão Gênica , Prontuários Médicos , MicroRNAs/metabolismo , Panicum/crescimento & desenvolvimento , Panicum/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , RNA Longo não Codificante/metabolismo , RNA de Plantas/metabolismo , Estresse Fisiológico
12.
Plant Physiol ; 183(1): 399-413, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32079733

RESUMO

A growing number of small secreted peptides (SSPs) in plants are recognized as important regulatory molecules with roles in processes such as growth, development, reproduction, stress tolerance, and pathogen defense. Recent discoveries further implicate SSPs in regulating root nodule development, which is of particular significance for legumes. SSP-coding genes are frequently overlooked, because genome annotation pipelines generally ignore small open reading frames, which are those most likely to encode SSPs. Also, SSP-coding small open reading frames are often expressed at low levels or only under specific conditions, and thus are underrepresented in non-tissue-targeted or non-condition-optimized RNA-sequencing projects. We previously identified 4,439 SSP-encoding genes in the model legume Medicago truncatula To support systematic characterization and annotation of these putative SSP-encoding genes, we developed the M. truncatula Small Secreted Peptide Database (MtSSPdb; https://mtsspdb.noble.org/). MtSSPdb currently hosts (1) a compendium of M. truncatula SSP candidates with putative function and family annotations; (2) a large-scale M. truncatula RNA-sequencing-based gene expression atlas integrated with various analytical tools, including differential expression, coexpression, and pathway enrichment analyses; (3) an online plant SSP prediction tool capable of analyzing protein sequences at the genome scale using the same protocol as for the identification of SSP genes; and (4) information about a library of synthetic peptides and root and nodule phenotyping data from synthetic peptide screens in planta. These datasets and analytical tools make MtSSPdb a unique and valuable resource for the plant research community. MtSSPdb also has the potential to become the most complete database of SSPs in plants.


Assuntos
Medicago truncatula/genética , Peptídeos/metabolismo , Proteínas de Plantas/metabolismo , Bases de Dados Factuais , Genoma de Planta/genética , Peptídeos/genética , Proteínas de Plantas/genética
13.
Curr Protoc Plant Biol ; 4(3): e20098, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31479208

RESUMO

Hundreds to thousands of small secreted peptides (SSPs) are encoded in plant genomes but have been overlooked, and most remain unannotated and unstudied. Despite their low profile, they have been found to confer dramatic effects on growth and development of plants. With the growing appreciation of their significance, the development of appropriate methods to identify and functionally assess the myriad SSPs encoded in plant genomes has become critical. Here, we provide protocols for the computational and physiological analysis of SSPs in plant genomes. We first describe our methodology successfully used for genome-wide identification and annotation of SSP-coding genes in the model legume Medicago truncatula, which can be readily adapted for other plant species. We then provide protocols for the functional analysis of SSPs using various synthetic peptide screens. Considerations for the design and handling of peptides are included. © 2019 by John Wiley & Sons, Inc.


Assuntos
Medicago truncatula , Proteínas de Plantas , Genoma de Planta , Peptídeos
14.
Plant J ; 98(1): 153-164, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30548978

RESUMO

Cell-, tissue- or organ-specific inducible expression systems are powerful tools for functional analysis of changes to the pattern, level or timing of gene expression. However, plant researchers lack standardised reagents that promote reproducibility across the community. Here, we report the development and functional testing of a Gateway-based system for quantitatively, spatially and temporally controlling inducible gene expression in Arabidopsis that overcomes several drawbacks of the legacy systems. We used this modular driver/effector system with intrinsic reporting of spatio-temporal promoter activity to generate 18 well-characterised homozygous transformed lines showing the expected expression patterns specific for the major cell types of the Arabidopsis root; seed and plasmid vectors are available through the Arabidopsis stock centre. The system's tight regulation was validated by assessing the effects of diphtheria toxin A chain expression. We assessed the utility of Production of Anthocyanin Pigment 1 (PAP1) as an encoded effector mediating cell-autonomous marks. With this shared resource of characterised reference driver lines, which can be expanded with additional promoters and the use of other fluorescent proteins, we aim to contribute towards enhancing reproducibility of qualitative and quantitative analyses.


Assuntos
Arabidopsis/genética , Genes Reporter , Antocianinas/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estradiol/metabolismo , Regulação da Expressão Gênica de Plantas , Especificidade de Órgãos , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
15.
Plant Physiol ; 175(4): 1669-1689, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29030416

RESUMO

Growing evidence indicates that small, secreted peptides (SSPs) play critical roles in legume growth and development, yet the annotation of SSP-coding genes is far from complete. Systematic reannotation of the Medicago truncatula genome identified 1,970 homologs of established SSP gene families and an additional 2,455 genes that are potentially novel SSPs, previously unreported in the literature. The expression patterns of known and putative SSP genes based on 144 RNA sequencing data sets covering various stages of macronutrient deficiencies and symbiotic interactions with rhizobia and mycorrhiza were investigated. Focusing on those known or suspected to act via receptor-mediated signaling, 240 nutrient-responsive and 365 nodulation-responsive Signaling-SSPs were identified, greatly expanding the number of SSP gene families potentially involved in acclimation to nutrient deficiencies and nodulation. Synthetic peptide applications were shown to alter root growth and nodulation phenotypes, revealing additional regulators of legume nutrient acquisition. Our results constitute a powerful resource enabling further investigations of specific SSP functions via peptide treatment and reverse genetics.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Estudo de Associação Genômica Ampla , Nodulação/fisiologia , Medicago truncatula/genética , Filogenia , Proteínas de Plantas/metabolismo , Nodulação/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Sinorhizobium meliloti/fisiologia , Simbiose , Transcriptoma
16.
Curr Opin Plant Biol ; 39: 31-39, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28582679

RESUMO

Root system architecture (RSA) and physiological functions define macronutrient uptake efficiency. Small signaling peptides (SSPs), that act in manners similar to hormones, and their cognate receptors transmit signals both locally and systemically. Several SSPs controlling morphological and physiological traits of roots have been identified to be associated with macronutrient uptake. Recent development in plant genome research has provided an avenue toward systems-based identification and prediction of additional SSPs. This review highlights recent studies on SSP pathways important for optimization of macronutrient uptake and provides new insights into the diversity of SSPs regulated in response to changes in macronutrient availabilities.


Assuntos
Peptídeos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas/metabolismo , Transdução de Sinais , Expressão Gênica , Nitrogênio/metabolismo , Peptídeos/genética , Nodulação , Plantas/genética
18.
J Exp Bot ; 66(7): 1907-18, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25680792

RESUMO

Lipid remodeling is one of the most dramatic metabolic responses to phosphorus (P) starvation. It consists of the degradation of phospholipids to release the phosphate needed by the cell and the accumulation of glycolipids to replace phospholipids in the membranes. It is shown that PHR1, a well-described transcriptional regulator of P starvation of the MYB family, largely controls this response. Glycerolipid composition and the expression of most lipid-remodeling gene transcripts analysed were altered in the phr1 mutant under phosphate starvation in comparison to wild-type plants. In addition to these results, the lipidomic characterization of wild-type plants showed two novel features of the lipid response to P starvation for Arabidopsis. Triacylglycerol (TAG) accumulates dramatically under P starvation (by as much as ~20-fold in shoots and ~13-fold in roots), a response known to occur in green algae but hardly known in plants. Surprisingly, there was an increase in phosphatidylglycerol (PG) in P-starved roots, a response that may be adaptive as it was suppressed in the phr1 mutant.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Metabolismo dos Lipídeos , Mutação , Fosfatos/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Plântula , Transdução de Sinais , Fatores de Transcrição/genética
19.
Plant Cell Environ ; 38(1): 172-87, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24894834

RESUMO

Massive changes in gene expression occur when plants are subjected to phosphorus (P) limitation, but the breadth of metabolic changes in these conditions and their regulation is barely investigated. Nearly 350 primary and secondary metabolites were profiled in shoots and roots of P-replete and P-deprived Arabidopsis thaliana wild type and mutants of the central P-signalling components PHR1 and PHO2, and microRNA399 overexpresser. In the wild type, the levels of 87 primary metabolites, including phosphorylated metabolites but not 3-phosphoglycerate, decreased, whereas the concentrations of most organic acids, amino acids, nitrogenous compounds, polyhydroxy acids and sugars increased. Furthermore, the levels of 35 secondary metabolites, including glucosinolates, benzoides, phenylpropanoids and flavonoids, were altered during P limitation. Observed changes indicated P-saving strategies, increased photorespiration and crosstalk between P limitation and sulphur and nitrogen metabolism. The phr1 mutation had a remarkably pronounced effect on the metabolic P-limitation response, providing evidence that PHR1 is a key factor for metabolic reprogramming during P limitation. The effects of pho2 or microRNA399 overexpression were comparatively minor. In addition, positive correlations between metabolites and gene transcripts encoding pathway enzymes were revealed. This study provides an unprecedented metabolic phenotype during P limitation in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fósforo/metabolismo , Fatores de Transcrição/genética , Enzimas de Conjugação de Ubiquitina/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Expressão Gênica , Ácidos Glicéricos/metabolismo , Redes e Vias Metabólicas , Metaboloma , MicroRNAs/genética , Mutação , Fenótipo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Brotos de Planta/genética , Brotos de Planta/metabolismo , RNA de Plantas/genética , Fatores de Transcrição/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo
20.
Plants (Basel) ; 4(2): 334-55, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27135332

RESUMO

Roots are crucial for nutrient and water acquisition and can be targeted to enhance plant productivity under a broad range of growing conditions. A current challenge for plant breeding is the limited ability to phenotype and select for desirable root characteristics due to their underground location. Plant breeding efforts aimed at modifying root traits can result in novel, more stress-tolerant crops and increased yield by enhancing the capacity of the plant for soil exploration and, thus, water and nutrient acquisition. Available approaches for root phenotyping in laboratory, greenhouse and field encompass simple agar plates to labor-intensive root digging (i.e., shovelomics) and soil boring methods, the construction of underground root observation stations and sophisticated computer-assisted root imaging. Here, we summarize root architectural traits relevant to crop productivity, survey root phenotyping strategies and describe their advantages, limitations and practical value for crop and forage breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...