Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36899806

RESUMO

Increasing human-bear conflicts are a growing concern, and managers often assume bears in developed areas are food-conditioned. We examined the relationship between human-bear conflicts and food conditioning by analyzing isotopic values of hair from black bears (Ursus americanus floridanus) involved in research (n = 34) and conflicts (n = 45). We separated research bears into wild and developed subgroups based on the impervious surface within their home ranges and separated conflict bears based on observations of human food consumption (anthropogenic = observations; management = no observations). We initially assumed wild bears were not food conditioned and anthropogenic bears were. However, using isotopic values, we classified 79% of anthropogenic bears and 8% of wild bears as food conditioned. Next, we assigned these bears to the appropriate food conditioned category and used the categorizations as a training set to classify developed and management bears. We estimated that 53% of management bears and 20% of developed bears were food conditioned. Only 60% of bears captured within or using developed areas showed evidence of food conditioning. We also found that δ13C values were a better predictor of anthropogenic foods in a bear's diet than δ15N values. Our results indicate that bears in developed areas are not necessarily food conditioned and caution against management actions based on limited observations of bear behavior.

2.
Sci Rep ; 10(1): 17783, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33082467

RESUMO

Globally, wide-ranging carnivore populations are imperiled due to human-caused habitat fragmentation. Where populations are fragmented, habitat quantification is often the first step in conservation. Presence-only species distribution models can provide robust results when proper scales and data are considered. We aimed to identify habitat for a fragmented carnivore population at two scales and aid conservation prioritization by identifying potential future habitat fragmentation. We used location data and environmental variables to develop a consensus model using Maxent and Mahalanobis distance to identify black bear (Ursus americanus floridanus) habitat across Florida, USA. We compared areas of habitat to areas of predicted sea level rise, development, and protected areas. Local-scale models performed better than state-scale models. We identified 23,798 km2 of habitat at the local-scale and 45,703 km2 at the state-scale. Approximately 10% of state- and 14% of local-scale habitat may be inundated by 2100, 16% of state- and 7% of local-scale habitat may be developed, and 54% of state- and 15% of local-scale habitat is unprotected. Results suggest habitat is at risk of fragmentation. Lack of focused conservation and connectivity among bear subpopulations could further fragmentation, and ultimately threaten population stability as seen in other fragmented carnivore populations globally.


Assuntos
Simulação por Computador , Conservação dos Recursos Naturais/métodos , Ursidae , Distribuição Animal , Animais , Ecossistema , Humanos , Dinâmica Populacional , Estados Unidos
3.
PLoS One ; 12(7): e0181849, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28738077

RESUMO

Loss and fragmentation of natural habitats caused by human land uses have subdivided several formerly contiguous large carnivore populations into multiple small and often isolated subpopulations, which can reduce genetic variation and lead to precipitous population declines. Substantial habitat loss and fragmentation from urban development and agriculture expansion relegated the Highlands-Glades subpopulation (HGS) of Florida, USA, black bears (Ursus americanus floridanus) to prolonged isolation; increasing human land development is projected to cause ≥ 50% loss of remaining natural habitats occupied by the HGS in coming decades. We conducted a noninvasive genetic spatial capture-recapture study to quantitatively describe the degree of contemporary habitat fragmentation and investigate the consequences of habitat fragmentation on population density and genetics of the HGS. Remaining natural habitats sustaining the HGS were significantly more fragmented and patchier than those supporting Florida's largest black bear subpopulation. Genetic diversity was low (AR = 3.57; HE = 0.49) and effective population size was small (NE = 25 bears), both of which remained unchanged over a period spanning one bear generation despite evidence of some immigration. Subpopulation density (0.054 bear/km2) was among the lowest reported for black bears, was significantly female-biased, and corresponded to a subpopulation size of 98 bears in available habitat. Conserving remaining natural habitats in the area occupied by the small, genetically depauperate HGS, possibly through conservation easements and government land acquisition, is likely the most important immediate step to ensuring continued persistence of bears in this area. Our study also provides evidence that preferentially placing detectors (e.g., hair traps or cameras) primarily in quality habitat across fragmented landscapes poses a challenge to estimating density-habitat covariate relationships using spatial capture-recapture models. Because habitat fragmentation and loss are likely to increase in severity globally, further investigation of the influence of habitat fragmentation and detector placement on estimation of this relationship is warranted.


Assuntos
Ursidae/crescimento & desenvolvimento , Ursidae/genética , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Florida , Variação Genética/genética , Genética Populacional/métodos , Humanos , Densidade Demográfica , Dinâmica Populacional/estatística & dados numéricos , Análise Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA