Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18788, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914762

RESUMO

A fast and reliable range monitoring method is required to take full advantage of the high linear energy transfer provided by therapeutic ion beams like carbon and oxygen while minimizing damage to healthy tissue due to range uncertainties. Quasi-real-time range monitoring using in-beam positron emission tomography (PET) with therapeutic beams of positron-emitters of carbon and oxygen is a promising approach. The number of implanted ions and the time required for an unambiguous range verification are decisive factors for choosing a candidate isotope. An experimental study was performed at the FRS fragment-separator of GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany, to investigate the evolution of positron annihilation activity profiles during the implantation of [Formula: see text]O and [Formula: see text]O ion beams in a PMMA phantom. The positron activity profile was imaged by a dual-panel version of a Siemens Biograph mCT PET scanner. Results from a similar experiment using ion beams of carbon positron-emitters [Formula: see text]C and [Formula: see text]C performed at the same experimental setup were used for comparison. Owing to their shorter half-lives, the number of implanted ions required for a precise positron annihilation activity peak determination is lower for [Formula: see text]C compared to [Formula: see text]C and likewise for [Formula: see text]O compared to [Formula: see text]O, but their lower production cross-sections make it difficult to produce them at therapeutically relevant intensities. With a similar production cross-section and a 10 times shorter half-life than [Formula: see text]C, [Formula: see text]O provides a faster conclusive positron annihilation activity peak position determination for a lower number of implanted ions compared to [Formula: see text]C. A figure of merit formulation was developed for the quantitative comparison of therapy-relevant positron-emitting beams in the context of quasi-real-time beam monitoring. In conclusion, this study demonstrates that among the positron emitters of carbon and oxygen, [Formula: see text]O is the most feasible candidate for quasi-real-time range monitoring by in-beam PET that can be produced at therapeutically relevant intensities. Additionally, this study demonstrated that the in-flight production and separation method can produce beams of therapeutic quality, in terms of purity, energy, and energy spread.

2.
Nucl Instrum Methods Phys Res B ; 541: 114-116, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37265512

RESUMO

The FRagment Separator FRS at GSI is a versatile spectrometer and separator for experiments with relativistic in-flight separated short-lived exotic beams. One branch of the FRS is connected to the target hall where the bio-medical cave (Cave M) is located. Recently a joint activity between the experimental groups of the FRS and the biophysics at the GSI and Department of physics at LMU was started to perform biomedical experiments relevant for hadron therapy with positron emitting carbon and oxygen beams. This paper presents the new ion-optical mode and commissioning results of the FRS-Cave M branch where positron emitting 15O-ions were provided to the medical cave for the first time. An overall conversion efficiency of 2.9±0.2×10-4 15O fragments per primary 16O ion accelerated in the synchrotron SIS18 was reached.

3.
Phys Med Biol ; 68(1)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36533621

RESUMO

Objective. Beams of stable ions have been a well-established tool for radiotherapy for many decades. In the case of ion beam therapy with stable12C ions, the positron emitters10,11C are produced via projectile and target fragmentation, and their decays enable visualization of the beam via positron emission tomography (PET). However, the PET activity peak matches the Bragg peak only roughly and PET counting statistics is low. These issues can be mitigated by using a short-lived positron emitter as a therapeutic beam.Approach.An experiment studying the precision of the measurement of ranges of positron-emitting carbon isotopes by means of PET has been performed at the FRS fragment-separator facility of GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany. The PET scanner used in the experiment is a dual-panel version of a Siemens Biograph mCT PET scanner.Main results.High-quality in-beam PET images and activity distributions have been measured from the in-flight produced positron emitting isotopes11C and10C implanted into homogeneous PMMA phantoms. Taking advantage of the high statistics obtained in this experiment, we investigated the time evolution of the uncertainty of the range determined by means of PET during the course of irradiation, and show that the uncertainty improves with the inverse square root of the number of PET counts. The uncertainty is thus fully determined by the PET counting statistics. During the delivery of 1.6 × 107ions in 4 spills for a total duration of 19.2 s, the PET activity range uncertainty for10C,11C and12C is 0.04 mm, 0.7 mm and 1.3 mm, respectively. The gain in precision related to the PET counting statistics is thus much larger when going from11C to10C than when going from12C to11C. The much better precision for10C is due to its much shorter half-life, which, contrary to the case of11C, also enables to include the in-spill data in the image formation.Significance. Our results can be used to estimate the contribution from PET counting statistics to the precision of range determination in a particular carbon therapy situation, taking into account the irradiation scenario, the required dose and the PET scanner characteristics.


Assuntos
Tomografia por Emissão de Pósitrons , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas , Meia-Vida , Alemanha
4.
Phys Rev Lett ; 129(14): 142502, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36240396

RESUMO

The root mean square radii of the proton density distribution in ^{16-24}O derived from measurements of charge changing cross sections with a carbon target at ∼900A MeV together with the matter radii portray thick neutron skin for ^{22-24}O despite ^{22,24}O being doubly magic. Imprints of the shell closures at N=14 and 16 are reflected in local minima of their proton radii that provide evidence for the tensor interaction causing them. The radii agree with ab initio calculations employing the chiral NNLO_{sat} interaction, though skin thickness predictions are challenged. Shell model predictions agree well with the data.


Assuntos
Nêutrons , Prótons , Carbono
5.
Sci Data ; 9(1): 550, 2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36075930

RESUMO

The experimental mass data from the Atomic Mass Compilation - 2012 (AMC12) has been analyzed for two-neutron separation energies ([Formula: see text]), two-proton separation energies ([Formula: see text]), double-beta decay energies ([Formula: see text]), and four-beta decay energies ([Formula: see text]) and plotted against neutron number and mass number, respectively. A new weighted slope method of extrapolation, tested for known and new mass measurements, has been used to obtain the extrapolated mass values with better precision for more than 1100 nuclei far from the valley of stability, out of which more than 100 are being reported for the first time. A comparison has been made with five of the popular mass models with reference to experimental extrapolated masses from the present work and the Atomic Mass Evaluation 2016 (AME16). The extrapolated experimental atomic mass data will be very useful for both experimentalists and mass-model theoreticians, as well as in simulations of astrophysical r-processes.

6.
Phys Rev Lett ; 124(22): 222504, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32567915

RESUMO

We report the measurement of reaction cross sections (σ_{R}^{ex}) of ^{27,29}F with a carbon target at RIKEN. The unexpectedly large σ_{R}^{ex} and derived matter radius identify ^{29}F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the 2p_{3/2} orbital, thereby vanishing the shell closure associated with the neutron number N=20. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of ^{27}F but are challenged for ^{29}F.

7.
Phys Rev Lett ; 123(9): 092502, 2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31524489

RESUMO

The most remote isotope from the proton dripline (by 4 atomic mass units) has been observed: ^{31}K. It is unbound with respect to three-proton (3p) emission, and its decays have been detected in flight by measuring the trajectories of all decay products using microstrip detectors. The 3p emission processes have been studied by the means of angular correlations of ^{28}S+3p and the respective decay vertices. The energies of the previously unknown ground and excited states of ^{31}K have been determined. This provides its 3p separation energy value S_{3p} of -4.6(2) MeV. Upper half-life limits of 10 ps of the observed ^{31}K states have been derived from distributions of the measured decay vertices.

8.
Nat Commun ; 9(1): 1594, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29686394

RESUMO

The nuclear shell structure, which originates in the nearly independent motion of nucleons in an average potential, provides an important guide for our understanding of nuclear structure and the underlying nuclear forces. Its most remarkable fingerprint is the existence of the so-called magic numbers of protons and neutrons associated with extra stability. Although the introduction of a phenomenological spin-orbit (SO) coupling force in 1949 helped in explaining the magic numbers, its origins are still open questions. Here, we present experimental evidence for the smallest SO-originated magic number (subshell closure) at the proton number six in 13-20C obtained from systematic analysis of point-proton distribution radii, electromagnetic transition rates and atomic masses of light nuclei. Performing ab initio calculations on 14,15C, we show that the observed proton distribution radii and subshell closure can be explained by the state-of-the-art nuclear theory with chiral nucleon-nucleon and three-nucleon forces, which are rooted in the quantum chromodynamics.

9.
Phys Rev Lett ; 120(6): 062503, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481255

RESUMO

A precision mass investigation of the neutron-rich titanium isotopes ^{51-55}Ti was performed at TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). The range of the measurements covers the N=32 shell closure, and the overall uncertainties of the ^{52-55}Ti mass values were significantly reduced. Our results conclusively establish the existence of the weak shell effect at N=32, narrowing down the abrupt onset of this shell closure. Our data were compared with state-of-the-art ab initio shell model calculations which, despite very successfully describing where the N=32 shell gap is strong, overpredict its strength and extent in titanium and heavier isotones. These measurements also represent the first scientific results of TITAN using the newly commissioned multiple-reflection time-of-flight mass spectrometer, substantiated by independent measurements from TITAN's Penning trap mass spectrometer.

10.
Phys Rev Lett ; 121(24): 242501, 2018 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-30608744

RESUMO

The isospin character of p-n pairs at large relative momentum has been observed for the first time in the ^{16}O ground state. A strong population of the J,T=1,0 state and a very weak population of the J,T=0,1 state were observed in the neutron pickup domain of ^{16}O(p,pd) at 392 MeV. This strong isospin dependence at large momentum transfer is not reproduced by the distorted-wave impulse approximation calculations with known spectroscopic amplitudes. The results indicate the presence of high-momentum protons and neutrons induced by the tensor interactions in the ground state of ^{16}O.

11.
Phys Rev Lett ; 117(20): 202501, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886506

RESUMO

Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.

12.
Phys Rev Lett ; 117(10): 102501, 2016 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-27636470

RESUMO

Proton radii of ^{12-19}C densities derived from first accurate charge changing cross section measurements at 900A MeV with a carbon target are reported. A thick neutron surface evolves from ∼0.5 fm in ^{15}C to ∼1 fm in ^{19}C. The halo radius in ^{19}C is found to be 6.4±0.7 fm as large as ^{11}Li. Ab initio calculations based on chiral nucleon-nucleon and three-nucleon forces reproduce the radii well.

13.
Phys Rev Lett ; 115(20): 202501, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26613434

RESUMO

Previously unknown isotopes (30)Ar and (29)Cl have been identified by measurement of the trajectories of their in-flight decay products (28)S+p+p and (28)S+p, respectively. The analysis of angular correlations of the fragments provided information on decay energies and the structure of the parent states. The ground states of (30)Ar and (29)Cl were found at 2.25(-0.10)(+0.15) and 1.8±0.1 MeV above the two- and one-proton thresholds, respectively. The lowest states in (30)Ar and (29)Cl point to a violation of isobaric symmetry in the structure of these unbound nuclei. The two-proton decay has been identified in a transition region between simultaneous two-proton and sequential proton emissions from the (30)Ar ground state, which is characterized by an interplay of three-body and two-body decay mechanisms. The first hint of a fine structure of the two-proton decay of (30)Ar*(2(+)) has been obtained by detecting two decay branches into the ground and first-excited states of the (28)S fragment.

14.
Phys Rev Lett ; 113(13): 132501, 2014 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-25302882

RESUMO

The first determination of radii of point proton distribution (proton radii) of (12-17)B from charge-changing cross sections (σ(CC)) measurements at the FRS, GSI, Darmstadt is reported. The proton radii are deduced from a finite-range Glauber model analysis of the σ(CC). The radii show an increase from ¹³B to ¹7B and are consistent with predictions from the antisymmetrized molecular dynamics model for the neutron-rich nuclei. The measurements show the existence of a thick neutron surface with neutron-proton radius difference of 0.51(0.11) fm in ¹7B.

15.
Phys Rev Lett ; 110(12): 122502, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166798

RESUMO

Long-lived isomers in (212)Bi have been studied following (238)U projectile fragmentation at 670 MeV per nucleon. The fragmentation products were injected as highly charged ions into a storage ring, giving access to masses and half-lives. While the excitation energy of the first isomer of (212)Bi was confirmed, the second isomer was observed at 1478(30) keV, in contrast to the previously accepted value of >1910 keV. It was also found to have an extended Lorentz-corrected in-ring half-life >30 min, compared to 7.0(3) min for the neutral atom. Both the energy and half-life differences can be understood as being due a substantial, though previously unrecognized, internal decay branch for neutral atoms. Earlier shell-model calculations are now found to give good agreement with the isomer excitation energy. Furthermore, these and new calculations predict the existence of states at slightly higher energy that could facilitate isomer deexcitation studies.

16.
Science ; 337(6099): 1207-10, 2012 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-22878498

RESUMO

Quantum-mechanical shell effects are expected to strongly enhance nuclear binding on an "island of stability" of superheavy elements. The predicted center at proton number Z = 114, 120, or 126 and neutron number N = 184 has been substantiated by the recent synthesis of new elements up to Z = 118. However, the location of the center and the extension of the island of stability remain vague. High-precision mass spectrometry allows the direct measurement of nuclear binding energies and thus the determination of the strength of shell effects. Here, we present such measurements for nobelium and lawrencium isotopes, which also pin down the deformed shell gap at N = 152.

17.
Phys Rev Lett ; 106(12): 122501, 2011 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-21517310

RESUMO

The masses of ten proton-rich nuclides, including the N=Z+1 nuclides 85Mo and 87Tc, were measured with the Penning trap mass spectrometer SHIPTRAP. Compared to the Atomic Mass Evaluation 2003 a systematic shift of the mass surface by up to 1.6 MeV is observed causing significant abundance changes of the ashes of astrophysical x-ray bursts. Surprisingly low α separation energies for neutron-deficient Mo and Tc are found, making the formation of a ZrNb cycle in the rp process possible. Such a cycle would impose an upper temperature limit for the synthesis of elements beyond Nb in the rp process.

18.
Nature ; 463(7282): 785-8, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20148034

RESUMO

The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended decay chains introduces uncertainties that render the interpretation difficult. Here we report direct mass measurements of trans-uranium nuclides. Located at the farthest tip of the actinide species on the proton number-neutron number diagram, these nuclides represent the gateway to the predicted island of stability. In particular, we have determined the mass values of (252-254)No (atomic number 102) with the Penning trap mass spectrometer SHIPTRAP. The uncertainties are of the order of 10 keV/c(2) (representing a relative precision of 0.05 p.p.m.), despite minute production rates of less than one atom per second. Our experiments advance direct mass measurements by ten atomic numbers with no loss in accuracy, and provide reliable anchor points en route to the island of stability.

19.
Phys Rev Lett ; 105(17): 172501, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21231037

RESUMO

A study of cooled ¹97Au projectile-fragmentation products has been performed with a storage ring. This has enabled metastable nuclear excitations with energies up to 3 MeV, and half-lives extending to minutes or longer, to be identified in the neutron-rich nuclides ¹8³(,)¹84(,)¹86Hf and ¹86(,)¹87Ta. The results support the prediction of a strongly favored isomer region near neutron number 116.

20.
Phys Rev Lett ; 102(15): 152501, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518623

RESUMO

The first measurement of the momentum distribution for one-neutron removal from (24)O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99 +/- 4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63 +/- 7 mb. The results are well explained with a nearly pure 2s_{1/2} neutron spectroscopic factor of 1.74 +/- 0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that (24)O is a new doubly magic nucleus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...