Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(11): 13903-13913, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38459939

RESUMO

Multijunction solar cells have the prospect of a greater theoretical efficiency limit than single-junction solar cells by minimizing the transmissive and thermalization losses a single absorber material has. In solar cell applications, Sb2S3 is considered an attractive absorber due to its elemental abundance, stability, and high absorption coefficient in the visible range of the solar spectrum, yet with a band gap of 1.7 eV, it is transmissive for near-IR and IR photons. Using it as the top cell (the cell where light is first incident) in a two-terminal tandem architecture in combination with a bottom cell (the cell where light arrives second) of PbS quantum dots (QDs), which have an adjustable band gap suitable for absorbing longer wavelengths, is a promising approach to harvest the solar spectrum more effectively. In this work, these two subcells are monolithically fabricated and connected in series by a poly(3,4-ethylene-dioxythiophene) polystyrene sulfonate (PEDOT:PSS)-ZnO tunnel junction as the recombination layer. We explore the surface morphology of ZnO QD films with different spin-coating conditions, which serve as the PbS QD cell's electron transport material. Furthermore, we examine the differences in photogenerated current upon varying the PbS QD absorber layer thickness and the electrical and optical characteristics of the tandem with respect to the stand-alone reference cells. This tandem architecture demonstrates an extended spectral response into the IR with an open-circuit potential exceeding 1.1 V and a power conversion efficiency of 5.6%, which is greater than that of each single-junction cell.

2.
Adv Mater ; 36(6): e2307743, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37988595

RESUMO

All-perovskite tandem solar cells show great potential to enable the highest performance at reasonable costs for a viable market entry in the near future. In particular, wide-bandgap (WBG) perovskites with higher open-circuit voltage (VOC ) are essential to further improve the tandem solar cells' performance. Here, a new 1.8 eV bandgap triple-halide perovskite composition in conjunction with a piperazinium iodide (PI) surface treatment is developed. With structural analysis, it is found that the PI modifies the surface through a reduction of excess lead iodide in the perovskite and additionally penetrates the bulk. Constant light-induced magneto-transport measurements are applied to separately resolve charge carrier properties of electrons and holes. These measurements reveal a reduced deep trap state density, and improved steady-state carrier lifetime (factor 2.6) and diffusion lengths (factor 1.6). As a result, WBG PSCs achieve 1.36 V VOC , reaching 90% of the radiative limit. Combined with a 1.26 eV narrow bandgap (NBG) perovskite with a rubidium iodide additive, this enables a tandem cell with a certified scan efficiency of 27.5%.

3.
Science ; 381(6653): 63-69, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37410849

RESUMO

Improved stability and efficiency of two-terminal monolithic perovskite-silicon tandem solar cells will require reductions in recombination losses. By combining a triple-halide perovskite (1.68 electron volt bandgap) with a piperazinium iodide interfacial modification, we improved the band alignment, reduced nonradiative recombination losses, and enhanced charge extraction at the electron-selective contact. Solar cells showed open-circuit voltages of up to 1.28 volts in p-i-n single junctions and 2.00 volts in perovskite-silicon tandem solar cells. The tandem cells achieve certified power conversion efficiencies of up to 32.5%.

4.
ACS Appl Energy Mater ; 5(10): 11977-11986, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36311464

RESUMO

A series of perovskite solar cells with systematically varying surface area of the interface between n-type electron conducting layer (TiO2) and perovskite are prepared by using an ordered array of straight, cylindrical nanopores generated by anodizing an aluminum layer evaporated onto a transparent conducting electrode. A series of samples with pore length varied from 100 to 500 nm are compared to each other and complemented by a classical planar cell and a mesoporous counterpart. All samples are characterized in terms of morphology, chemistry, optical properties, and performance. All samples absorb light to the same degree, and the increased interface area does not generate enhanced recombination. However, the short circuit current density increases monotonically with the specific surface area, indicating improved charge extraction efficiency. The importance of the slow interfacial rearrangement of ions associated with planar perovskite cells is shown to decrease in a systematic manner as the interfacial surface area increases. The results demonstrate that planar and mesoporous cells obey to the same physical principles and differ from each other quantitatively, not qualitatively. Additionally, the study shows that a significantly lower TiO2 surface area compared to mesoporous TiO2 is needed for an equal charge extraction.

5.
Small ; 17(20): e2100487, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33817974

RESUMO

The preparation of a highly ordered nanostructured transparent electrode based on a combination of nanosphere lithography and anodization is presented. The size of perfectly ordered pore domains is improved by an order of magnitude with respect to the state of the art. The concomitantly reduced density of defect pores increases the fraction of pores that are in good electrical contact with the underlying transparent conductive substrate. This improvement in structural quality translates directly and linearly into an improved performance of energy conversion devices built from such electrodes in a linear manner.


Assuntos
Óxido de Alumínio , Nanoestruturas , Eletrodos , Desempenho Físico Funcional
6.
ACS Appl Mater Interfaces ; 13(10): 11861-11868, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33667064

RESUMO

Antimony chalcogenides represent a family of materials of low toxicity and relative abundance, with a high potential for future sustainable solar energy conversion technology. However, solar cells based on antimony chalcogenides present open-circuit voltage losses that limit their efficiencies. These losses are attributed to several recombination mechanisms, with interfacial recombination being considered as one of the dominant processes. In this work, we exploit atomic layer deposition (ALD) to grow a series of ultrathin ZnS interfacial layers at the TiO2/Sb2S3 interface to mitigate interfacial recombination and to increase the carrier lifetime. ALD allows for very accurate control over the ZnS interlayer thickness on the ångström scale (0-1.5 nm) and to deposit highly pure Sb2S3. Our systematic study of the photovoltaic and optoelectronic properties of these devices by impedance spectroscopy and transient absorption concludes that the optimum ZnS interlayer thickness of 1.0 nm achieves the best balance between the beneficial effect of an increased recombination resistance at the interface and the deleterious barrier behavior of the wide-bandgap semiconductor ZnS. This optimization allows us to reach an overall power conversion efficiency of 5.09% in planar configuration.

7.
ACS Appl Energy Mater ; 2(12): 8747-8756, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31894204

RESUMO

The combination of oxide and heavier chalcogenide layers in thin film photovoltaics suffers limitations associated with oxygen incorporation and sulfur deficiency in the chalcogenide layer or with a chemical incompatibility which results in dewetting issues and defect states at the interface. Here, we establish atomic layer deposition (ALD) as a tool to overcome these limitations. ALD allows one to obtain highly pure Sb2S3 light absorber layers, and we exploit this technique to generate an additional interfacial layer consisting of 1.5 nm ZnS. This ultrathin layer simultaneously resolves dewetting and passivates defect states at the interface. We demonstrate via transient absorption spectroscopy that interfacial electron recombination is one order of magnitude slower at the ZnS-engineered interface than hole recombination at the Sb2S3/P3HT interface. The comparison of solar cells with and without oxide incorporation in Sb2S3, with and without the ultrathin ZnS interlayer, and with systematically varied Sb2S3 thickness provides a complete picture of the physical processes at work in the devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...