Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Clin Med Phys ; 25(5): e14333, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493500

RESUMO

PURPOSE: Left ventricle (LV) regional myocardial displacement due to cardiac motion was assessed using cardiovascular magnetic resonance (CMR) cine images to establish region-specific margins for cardiac radioablation treatments. METHODS: CMR breath-hold cine images and LV myocardial tissue contour points were analyzed for 200 subjects, including controls (n = 50) and heart failure (HF) patients with preserved ejection fraction (HFpEF, n = 50), mid-range ejection fraction (HFmrEF, n = 50), and reduced ejection fraction (HFrEF, n = 50). Contour points were divided into segments according to the 17-segment model. For each patient, contour point displacements were determined for the long-axis (all 17 segments) and short-axis (segments 1-12) directions. Mean overall, tangential (longitudinal or circumferential), and normal (radial) displacements were calculated for the 17 segments and for each segment level. RESULTS: The greatest overall motion was observed in the control group-long axis: 4.5 ± 1.2 mm (segment 13 [apical anterior] epicardium) to 13.8 ± 3.0 mm (segment 6 [basal anterolateral] endocardium), short axis: 4.3 ± 0.8 mm (segment 9 [mid inferoseptal] epicardium) to 11.5 ± 2.3 mm (segment 1 [basal anterior] endocardium). HF patients exhibited lesser motion, with the smallest overall displacements observed in the HFrEF group-long axis: 4.3 ± 1.7 mm (segment 13 [apical anterior] epicardium) to 10.6 ± 3.4 mm (segment 6 [basal anterolateral] endocardium), short axis: 3.9 ± 1.3 mm (segment 8 [mid anteroseptal] epicardium) to 7.4 ± 2.8 mm (segment 1 [basal anterior] endocardium). CONCLUSIONS: This analysis provides an estimate of epicardial and endocardial displacement for the 17 segments of the LV for patients with normal and impaired LV function. This reference data can be used to establish treatment planning margin guidelines for cardiac radioablation. Smaller margins may be used for patients with higher degree of impaired heart function, depending on the LV segment.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Ventrículos do Coração , Miocárdio , Movimentos dos Órgãos , Ablação por Radiofrequência , Taquicardia Ventricular , Ventrículos do Coração/diagnóstico por imagem , Ventrículos do Coração/cirurgia , Imageamento por Ressonância Magnética , Taquicardia Ventricular/cirurgia , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Idoso
2.
BMC Cancer ; 24(1): 171, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310262

RESUMO

BACKGROUND: Radiotherapy delivery regimens can vary between a single fraction (SF) and multiple fractions (MF) given daily for up to several weeks depending on the location of the cancer or metastases. With limited evidence comparing fractionation regimens for oligometastases, there is support to explore toxicity levels to nearby organs at risk as a primary outcome while using SF and MF stereotactic ablative radiotherapy (SABR) as well as explore differences in patient-reported quality of life and experience. METHODS: This study will randomize 598 patients in a 1:1 ratio between the standard arm (MF SABR) and the experimental arm (SF SABR). This trial is designed as two randomized controlled trials within one patient population for resource efficiency. The primary objective of the first randomization is to determine if SF SABR is non-inferior to MF SABR, with respect to healthcare provider (HCP)-reported grade 3-5 adverse events (AEs) that are related to SABR. Primary endpoint is toxicity while secondary endpoints include lesional control rate (LCR), and progression-free survival (PFS). The second randomization (BC Cancer sites only) will allocate participants to either complete quality of life (QoL) questionnaires only; or QoL questionnaires and a symptom-specific survey with symptom-guided HCP intervention. The primary objective of the second randomization is to determine if radiation-related symptom questionnaire-guided HCP intervention results in improved reported QoL as measured by the EuroQoL-5-dimensions-5levels (EQ-5D-5L) instrument. The primary endpoint is patient-reported QoL and secondary endpoints include: persistence/resolution of symptom reporting, QoL, intervention cost effectiveness, resource utilization, and overall survival. DISCUSSION: This study will compare SF and MF SABR in the treatment of oligometastases and oligoprogression to determine if there is non-inferior toxicity for SF SABR in selected participants with 1-5 oligometastatic lesions. This study will also compare patient-reported QoL between participants who receive radiation-related symptom-guided HCP intervention and those who complete questionnaires alone. TRIAL REGISTRATION: Clinicaltrials.gov identifier: NCT05784428. Date of Registration: 23 March 2023.


Assuntos
Neoplasias , Radiocirurgia , Humanos , Neoplasias/mortalidade , Neoplasias/patologia , Neoplasias/radioterapia , Intervalo Livre de Progressão , Qualidade de Vida , Radiocirurgia/efeitos adversos , Radiocirurgia/métodos , Estudos de Equivalência como Asunto
3.
Biomed Phys Eng Express ; 10(2)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359447

RESUMO

Purpose.Cardiac radiosurgery is a non-invasive treatment modality for ventricular tachycardia, where a linear accelerator is used to irradiate the arrhythmogenic region within the heart. In this work, cardiac magnetic resonance (CMR) cine images were used to quantify left ventricle (LV) segment-specific motion during the cardiac cycle and to assess potential advantages of cardiac-gated radiosurgery.Methods.CMR breath-hold cine images and LV contour points were analyzed for 50 controls and 50 heart failure patients with reduced ejection fraction (HFrEF, EF < 40%). Contour points were divided into anatomic segments according to the 17-segment model, and each segment was treated as a hypothetical treatment target. The optimum treatment window (one fifth of the cardiac cycle) was determined where segment centroid motion was minimal, then the maximum centroid displacement and treatment area were determined for the full cardiac cycle and for the treatment window. Mean centroid displacement and treatment area reductions with cardiac gating were determined for each of the 17 segments.Results.Full motion segment centroid displacements ranged between 6-14 mm (controls) and 4-11 mm (HFrEF). Full motion treatment areas ranged between 129-715 mm2(controls) and 149-766 mm2(HFrEF). With gating, centroid displacements were reduced to 1 mm (controls and HFrEF), while treatment areas were reduced to 62-349 mm2(controls) and 83-393 mm2(HFrEF). Relative treatment area reduction ranged between 38%-53% (controls) and 26%-48% (HFrEF).Conclusion.This data demonstrates that cardiac cycle motion is an important component of overall target motion and varies depending on the anatomic cardiac segment. Accounting for cardiac cycle motion, through cardiac gating, has the potential to significantly reduce treatment volumes for cardiac radiosurgery.


Assuntos
Insuficiência Cardíaca , Radiocirurgia , Humanos , Ventrículos do Coração/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Radiocirurgia/métodos , Volume Sistólico , Coração/diagnóstico por imagem
4.
Int J Radiat Oncol Biol Phys ; 118(5): 1497-1506, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38220069

RESUMO

PURPOSE: The optimal sequencing of local and systemic therapy for oligometastatic cancer has not been established. This study retrospectively compared progression-free survival (PFS), overall survival (OS), and SABR-related toxicity between upfront versus delay of systemic treatment until progression in patients in the SABR-5 trial. METHODS AND MATERIALS: The single-arm phase 2 SABR-5 trial accrued patients with up to 5 oligometastases across SABR-5 between November 2016 and July 2020. Patients received SABR to all lesions. Two cohorts were retrospectively identified: those receiving upfront systemic treatment along with SABR and those for whom systemic treatment was delayed until disease progression. Patients treated for oligoprogression were excluded. Propensity score analysis with overlap weighting balanced baseline characteristics of cohorts. Bootstrap sampling and Cox regression models estimated the association of delayed systemic treatment with PFS, OS, and grade ≥2 toxicity. RESULTS: A total of 319 patients with oligometastases underwent treatment on SABR-5, including 121 (38%) and 198 (62%) who received upfront and delayed systemic treatment, respectively. In the weighted sample, prostate cancer was the most common primary tumor histology (48%) followed by colorectal (18%), breast (13%), and lung (4%). Most patients (93%) were treated for 1 to 2 metastases. The median follow-up time was 34 months (IQR, 24-45). Delayed systemic treatment was associated with shorter PFS (hazard ratio [HR], 1.56; 95% CI, 1.15-2.13; P = .005) but similar OS (HR, 0.90; 95% CI, 0.51-1.59; P = .65) compared with upfront systemic treatment. Risk of grade 2 or higher SABR-related toxicity was reduced with delayed systemic treatment (odds ratio, 0.35; 95% CI, 0.15-0.70; P < .001). CONCLUSIONS: Delayed systemic treatment is associated with shorter PFS without reduction in OS and with reduced SABR-related toxicity and may be a favorable option for select patients seeking to avoid initial systemic treatment. Efforts should continue to accrue patients to histology-specific trials examining a delayed systemic treatment approach.


Assuntos
Neoplasias da Próstata , Radiocirurgia , Masculino , Humanos , Estudos Retrospectivos , Neoplasias da Próstata/patologia , Intervalo Livre de Progressão , Radiocirurgia/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA