Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
Plant Cell ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38513608

RESUMO

Embryo development in Arabidopsis (Arabidopsis thaliana) starts off with an asymmetric division of the zygote to generate the precursors of the embryo proper and the supporting extraembryonic suspensor. The suspensor degenerates as the development of the embryo proper proceeds beyond the heart stage. Until the globular stage, the suspensor maintains embryonic potential and can form embryos in the absence of the developing embryo proper. We report a mutant called meerling-1 (mrl-1), which shows a high penetrance of suspensor-derived polyembryony due to delayed development of the embryo proper. Eventually, embryos from both apical and suspensor lineages successfully develop into normal plants and complete their life cycle. We identified the causal mutation as a genomic rearrangement altering the promoter of the Arabidopsis U3 SMALL NUCLEOLAR RNA-ASSOCIATED PROTEIN 18 (UTP18) homolog that encodes a nucleolar-localized WD40-repeat protein involved in processing 18S pre-ribosomal RNA. Accordingly, root-specific knockout of UTP18 caused growth arrest and accumulation of unprocessed 18S pre-rRNA. We generated the mrl-2 loss-of-function mutant and observed asynchronous megagametophyte development causing embryo sac abortion. Together, our results indicate that promoter rearrangement decreased UTP18 protein abundance during early-stage embryo proper development, triggering suspensor-derived embryogenesis. Our data support the existence of non-cell autonomous signaling from the embryo proper to prevent direct reprogramming of the suspensor towards embryonic fate.

2.
Plant J ; 118(4): 1194-1206, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38321589

RESUMO

Living organisms possess mechanisms to safeguard genome integrity. To avoid spreading mutations, DNA lesions are detected and cell division is temporarily arrested to allow repair mechanisms. Afterward, cells either resume division or respond to unsuccessful repair by undergoing programmed cell death (PCD). How the success rate of DNA repair connects to later cell fate decisions remains incompletely known, particularly in plants. The Arabidopsis thaliana RETINOBLASTOMA-RELATED1 (RBR) protein and its partner E2FA, play both structural and transcriptional functions in the DNA damage response (DDR). Here we provide evidence that distinct RBR protein interactions with LXCXE motif-containing proteins guide these processes. Using the N849F substitution in the RBR B-pocket domain, which specifically disrupts binding to the LXCXE motif, we show that these interactions are dispensable in unchallenging conditions. However, N849F substitution abolishes RBR nuclear foci and promotes PCD and growth arrest upon genotoxic stress. NAC044, which promotes growth arrest and PCD, accumulates after the initial recruitment of RBR to foci and can bind non-focalized RBR through the LXCXE motif in a phosphorylation-independent manner, allowing interaction at different cell cycle phases. Disrupting NAC044-RBR interaction impairs PCD, but their genetic interaction points to opposite independent roles in the regulation of PCD. The LXCXE-binding dependency of the roles of RBR in the DDR suggests a coordinating mechanism to translate DNA repair success to cell survival. We propose that RBR and NAC044 act in two distinct DDR pathways, but interact to integrate input from both DDR pathways to decide upon an irreversible cell fate decision.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dano ao DNA , Reparo do DNA , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Apoptose , Motivos de Aminoácidos
3.
Plant Physiol ; 193(3): 1866-1879, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37584278

RESUMO

Plant development continues postembryonically with a lifelong ability to form new tissues and organs. Asymmetric cell division, coupled with fate segregation, is essential to create cellular diversity during tissue and organ formation. Arabidopsis (Arabidopsis thaliana) plants harboring mutations in the SCHIZORIZA (SCZ) gene display fate segregation defects in their roots, resulting in the presence of an additional layer of endodermis, production of root hairs from subepidermal tissue, and misexpression of several tissue identity markers. Some of these defects are observed in tissues where SCZ is not expressed, indicating that part of the SCZ function is nonautonomous. As a class B HEAT-SHOCK TRANSCRIPTION FACTOR (HSFB), the SCZ protein contains several conserved domains and motifs. However, which domain(s) discriminates SCZ from its family members to obtain a role in development remains unknown. Here, we investigate how each domain contributes to SCZ function in Arabidopsis root patterning by generating altered versions of SCZ by domain swapping and mutation. We show that the SCZ DNA-binding domain is the main factor for its developmental function, and that SCZ likely acts as a nonmotile transcriptional repressor. Our results demonstrate how members of the HSF family can evolve toward functions beyond stress response.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Regulação da Expressão Gênica de Plantas
4.
Dev Cell ; 58(18): 1657-1669.e5, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37480843

RESUMO

Salt stress is one of the unfavorable environmental factors to affect plants. Salinity represses root growth, resulting in reduced biomass of agricultural plants. Little is known about how plants maintain root growth to counteract salt stress. The AP2-domain transcription factors PLETHORA1/2 (PLT1/2) act as master regulators in root meristem maintenance in Arabidopsis. In this study, we report that the salt overly sensitive (SOS) pathway component SOS2 regulates PLT1/2 at the post-transcriptional level. Salt-activated SOS2 interacts and phosphorylates PLT1/2 through their conserved C-terminal motifs to stabilize PLT1/2, critical for root apical meristem maintenance under salt stress. The phospho-mimetic version of PLT1/2 restored meristem and primary root length reduction of sos2-2 and plt1-4 plt2-2 mutants on salt treatment. Moreover, SOS2-mediated PLT1/2 phosphorylation improves root growth recovery after salt stress alleviation. We identify a SOS2-PLT1/2 core protein module that is required for protecting primary root growth and meristem maintenance from salt stress.


Assuntos
Arabidopsis , Meristema , Transdução de Sinais , Arabidopsis/genética , Fosforilação , Estresse Salino
5.
Environ Microbiome ; 18(1): 62, 2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468998

RESUMO

BACKGROUND: Soil microbiomes are increasingly acknowledged to affect plant functioning. Research in molecular model species Arabidopsis thaliana has given detailed insights of such plant-microbiome interactions. However, the circumstances under which natural A. thaliana plants have been studied so far might represent only a subset of A. thaliana's full ecological context and potential biotic diversity of its root-associated microbiome. RESULTS: We collected A. thaliana root-associated soils from a secondary succession gradient covering 40 years of land abandonment. All field sites were situated on the same parent soil material and in the same climatic region. By sequencing the bacterial and fungal communities and soil abiotic analysis we discovered differences in both the biotic and abiotic composition of the root-associated soil of A. thaliana and these differences are in accordance with the successional class of the field sites. As the studied sites all have been under (former) agricultural use, and a climatic cline is absent, we were able to reveal a more complete variety of ecological contexts A. thaliana can appear and sustain in. CONCLUSIONS: Our findings lead to the conclusion that although A. thaliana is considered a pioneer plant species and previously almost exclusively studied in early succession and disturbed sites, plants can successfully establish in soils which have experienced years of ecological development. Thereby, A. thaliana can be exposed to a much wider variation in soil ecological context than is currently presumed. This knowledge opens up new opportunities to enhance our understanding of causal plant-microbiome interactions as A. thaliana cannot only grow in contrasting soil biotic and abiotic conditions along a latitudinal gradient, but also when those conditions vary along a secondary succession gradient. Future research could give insights in important plant factors to grow in more ecologically complex later-secondary succession soils, which is an impending direction of our current agricultural systems.

6.
Planta ; 257(6): 105, 2023 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-37120771

RESUMO

MAIN CONCLUSION: Our study presents evidence for a novel mechanism for RBR function in transcriptional gene silencing by interacting with key players of the RdDM pathway in Arabidopsis and several plant clades. Transposable elements and other repetitive elements are silenced by the RNA-directed DNA methylation pathway (RdDM). In RdDM, POLIV-derived transcripts are converted into double-stranded RNA (dsRNA) by the activity of RDR2 and subsequently processed into 24 nucleotide short interfering RNAs (24-nt siRNAs) by DCL3. 24-nt siRNAs serve as guides to direct AGO4-siRNA complexes to chromatin-bound POLV-derived transcripts generated from the template/target DNA. The interaction between POLV, AGO4, DMS3, DRD1, RDM1 and DRM2 promotes DRM2-mediated de novo DNA methylation. The Arabidopsis Retinoblastoma protein homolog (RBR) is a master regulator of the cell cycle, stem cell maintenance, and development. We in silico predicted and explored experimentally the protein-protein interactions (PPIs) between RBR and members of the RdDM pathway. We found that the largest subunits of POLIV and POLV (NRPD1 and NRPE1), the shared second largest subunit of POLIV and POLV (NRPD/E2), RDR1, RDR2, DCL3, DRM2, and SUVR2 contain canonical and non-canonical RBR binding motifs and several of them are conserved since algae and bryophytes. We validated experimentally PPIs between Arabidopsis RBR and several of the RdDM pathway proteins. Moreover, seedlings from loss-of-function mutants in RdDM and RBR show similar phenotypes in the root apical meristem. We show that RdDM and SUVR2 targets are up-regulated in the 35S:AmiGO-RBR background.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Neoplasias da Retina , Retinoblastoma , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação de DNA/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Retinoblastoma/genética , RNA Interferente Pequeno/genética , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismo , Neoplasias da Retina/genética , Regulação da Expressão Gênica de Plantas , Ribonuclease III/genética
7.
Science ; 374(6575): eaba5531, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34941412

RESUMO

In the plant meristem, tissue-wide maturation gradients are coordinated with specialized cell networks to establish various developmental phases required for indeterminate growth. Here, we used single-cell transcriptomics to reconstruct the protophloem developmental trajectory from the birth of cell progenitors to terminal differentiation in the Arabidopsis thaliana root. PHLOEM EARLY DNA-BINDING-WITH-ONE-FINGER (PEAR) transcription factors mediate lineage bifurcation by activating guanosine triphosphatase signaling and prime a transcriptional differentiation program. This program is initially repressed by a meristem-wide gradient of PLETHORA transcription factors. Only the dissipation of PLETHORA gradient permits activation of the differentiation program that involves mutual inhibition of early versus late meristem regulators. Thus, for phloem development, broad maturation gradients interface with cell-type-specific transcriptional regulators to stage cellular differentiation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Floema/citologia , Floema/crescimento & desenvolvimento , Raízes de Plantas/citologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Diferenciação Celular , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Meristema/citologia , Floema/genética , Floema/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , RNA-Seq , Transdução de Sinais , Análise de Célula Única , Fatores de Transcrição/genética , Transcriptoma
8.
Dev Cell ; 56(15): 2176-2191.e10, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34343477

RESUMO

Modular, repetitive structures are a key component of complex multicellular body plans across the tree of life. Typically, these structures are prepatterned by temporal oscillations in gene expression or signaling. Although a clock-and-wavefront mechanism was identified and plant leaf phyllotaxis arises from a Turing-type patterning for vertebrate somitogenesis and arthropod segmentation, the mechanism underlying lateral root patterning has remained elusive. To resolve this enigma, we combined computational modeling with in planta experiments. Intriguingly, auxin oscillations automatically emerge in our model from the interplay between a reflux-loop-generated auxin loading zone and stem-cell-driven growth dynamics generating periodic cell-size variations. In contrast to the clock-and-wavefront mechanism and Turing patterning, the uncovered mechanism predicts both frequency and spacing of lateral-root-forming sites to positively correlate with root meristem growth. We validate this prediction experimentally. Combined, our model and experimental results support that a reflux-and-growth patterning mechanism underlies lateral root priming.


Assuntos
Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Padronização Corporal , Biologia Computacional/métodos , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Meristema/metabolismo , Modelos Biológicos , Periodicidade , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais
10.
Development ; 147(6)2020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32108025

RESUMO

Aerial organs of plants, being highly prone to local injuries, require tissue restoration to ensure their survival. However, knowledge of the underlying mechanism is sparse. In this study, we mimicked natural injuries in growing leaves and stems to study the reunion between mechanically disconnected tissues. We show that PLETHORA (PLT) and AINTEGUMENTA (ANT) genes, which encode stem cell-promoting factors, are activated and contribute to vascular regeneration in response to these injuries. PLT proteins bind to and activate the CUC2 promoter. PLT proteins and CUC2 regulate the transcription of the local auxin biosynthesis gene YUC4 in a coherent feed-forward loop, and this process is necessary to drive vascular regeneration. In the absence of this PLT-mediated regeneration response, leaf ground tissue cells can neither acquire the early vascular identity marker ATHB8, nor properly polarise auxin transporters to specify new venation paths. The PLT-CUC2 module is required for vascular regeneration, but is dispensable for midvein formation in leaves. We reveal the mechanisms of vascular regeneration in plants and distinguish between the wound-repair ability of the tissue and its formation during normal development.


Assuntos
Arabidopsis , Redes Reguladoras de Genes/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Feixe Vascular de Plantas/fisiologia , Regeneração/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Desenvolvimento Vegetal/fisiologia , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Feixe Vascular de Plantas/genética , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Transdução de Sinais/genética , Fatores de Transcrição/fisiologia , Cicatrização/genética
11.
New Phytol ; 225(5): 1945-1955, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31639220

RESUMO

During land colonization, plants acquired a range of body plan adaptations, of which the innovation of three-dimensional (3D) tissues increased organismal complexity and reproductivity. In the moss, Physcomitrella patens, a 3D leafy gametophore originates from filamentous cells that grow in a two-dimensional (2D) plane through a series of asymmetric cell divisions. Asymmetric cell divisions that coincide with different cell division planes and growth directions enable the developmental switch from 2D to 3D, but insights into the underlying mechanisms coordinating this switch are still incomplete. Using 2D and 3D imaging and image segmentation, we characterized two geometric cues, the width of the initial cell and the angle of the transition division plane, which sufficiently distinguished a gametophore initial cell from a branch initial cell. These identified cues were further confirmed in gametophore formation mutants. The identification of a fluorescent marker allowed us to successfully predict the gametophore initial cell with > 90% accuracy before morphological changes, supporting our hypothesis that, before the transition division, parental cells of the gametophore initials possess different properties from those of the branch initials. Our results suggest that the cell fate decision of the initial cell is determined in the parental cell, before the transition division.


Assuntos
Bryopsida , Bryopsida/genética , Diferenciação Celular , Sinais (Psicologia)
12.
Plant Physiol ; 182(2): 919-932, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818906

RESUMO

The ErbB-3 BINDING PROTEIN 1 (EBP1) drives growth, but the mechanism of how it acts in plants is little understood. Here, we show that EBP1 expression and protein abundance in Arabidopsis (Arabidopsis thaliana) are predominantly confined to meristematic cells and are induced by sucrose and partially dependent on TARGET OF RAPAMYCIN (TOR) kinase activity. Consistent with being downstream of TOR, silencing of EBP1 restrains, while overexpression promotes, root growth, mostly under sucrose-limiting conditions. Inducible overexpression of RETINOBLASTOMA RELATED (RBR), a sugar-dependent transcriptional repressor of cell proliferation, depletes meristematic activity and causes precocious differentiation, which is attenuated by EBP1. To understand the molecular mechanism, we searched for EBP1- and RBR-interacting proteins by affinity purification and mass spectrometry. In line with the double-stranded RNA-binding activity of EBP1 in human (Homo sapiens) cells, the overwhelming majority of EBP1 interactors are part of ribonucleoprotein complexes regulating many aspects of protein synthesis, including ribosome biogenesis and mRNA translation. We confirmed that EBP1 associates with ribosomes and that EBP1 silencing hinders ribosomal RNA processing. We revealed that RBR also interacts with a set of EBP1-associated nucleolar proteins as well as factors that function in protein translation. This suggests EBP1 and RBR act antagonistically on common processes that determine the capacity for translation to tune meristematic activity in relation to available resources.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Meristema/metabolismo , Raízes de Plantas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Diferenciação Celular/genética , Cromatografia de Afinidade , Espectrometria de Massas , Meristema/genética , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Raízes de Plantas/genética , Ligação Proteica , Biossíntese de Proteínas/genética , RNA Ribossômico/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismo , Sacarose/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
13.
Cell Rep ; 29(2): 453-463.e3, 2019 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-31597103

RESUMO

A wide variety of multicellular organisms across the kingdoms display remarkable ability to restore their tissues or organs when they suffer damage. However, the ability to repair damage is not uniformly distributed throughout body parts. Here, we unravel the elusive mechanistic basis of boundaries on organ regeneration potential using root tip resection as a model and show that the dosage of gradient-expressed PLT2 transcription factor is the underlying cause. While transient downregulation of PLT2 in distinct set of plt mutant backgrounds renders meristematic cells incapable of regeneration, forced expression of PLT2 acts through auto-activation to confer regeneration potential to the cells undergoing differentiation. Surprisingly, sustained exposure to nuclear PLT2, beyond a threshold, leads to reduction of regeneration potential despite giving rise to longer meristem. Our studies reveal dosage-dependent role of gradient-expressed PLT2 in root tip regeneration and uncouple the size of an organ from its regeneration potential.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Organogênese/genética , Regeneração/fisiologia , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Meristema/genética , Fatores de Transcrição/metabolismo
14.
Curr Opin Plant Biol ; 51: 74-80, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31102928

RESUMO

Plants adapt their morphology in response to variable environmental conditions such as nitrate availability, drought, and temperature shifts. Three crucial aspects to this developmental plasticity are the control of initiation, identity and activity of meristems. At the cellular level, the activity of meristems is controlled by balancing self-renewal in stem cells, amplifying divisions in their daughter cells, and cell differentiation. Recent studies in plants have uncovered transcription factors regulating meristem activity at cellular resolution, and regulatory networks that couple these factors with phytohormone signalling for global plant growth regulation. Here, we highlight selected recent advances in our understanding of the multidimensional transcriptional networks that regulate meristem activity and discuss emerging insights on how a selection of environmental cues impinges on these networks.


Assuntos
Meristema , Reguladores de Crescimento de Plantas , Regulação da Expressão Gênica de Plantas , Desenvolvimento Vegetal , Plantas , Fatores de Transcrição
15.
Cell ; 177(4): 942-956.e14, 2019 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-30955889

RESUMO

Plants are sessile and have to cope with environmentally induced damage through modification of growth and defense pathways. How tissue regeneration is triggered in such responses and whether this involves stem cell activation is an open question. The stress hormone jasmonate (JA) plays well-established roles in wounding and defense responses. JA also affects growth, which is hitherto interpreted as a trade-off between growth and defense. Here, we describe a molecular network triggered by wound-induced JA that promotes stem cell activation and regeneration. JA regulates organizer cell activity in the root stem cell niche through the RBR-SCR network and stress response protein ERF115. Moreover, JA-induced ERF109 transcription stimulates CYCD6;1 expression, functions upstream of ERF115, and promotes regeneration. Soil penetration and response to nematode herbivory induce and require this JA-mediated regeneration response. Therefore, the JA tissue damage response pathway induces stem cell activation and regeneration and activates growth after environmental stress.


Assuntos
Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Raízes de Plantas/metabolismo , Células-Tronco/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclinas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Herbivoria , Ácidos Indolacéticos/metabolismo , Regeneração/fisiologia , Transdução de Sinais/fisiologia , Estresse Fisiológico , Fatores de Transcrição/metabolismo
16.
Curr Biol ; 28(19): 3031-3043.e2, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30245102

RESUMO

Oriented cell divisions are significant in plant morphogenesis because plant cells are embedded in cell walls and cannot relocate. Cell divisions follow various regular orientations, but the underlying mechanisms have not been clarified. We propose that cell-shape-dependent self-organization of cortical microtubule arrays is able to provide a mechanism for determining planes of early tissue-generating divisions and may form the basis for robust control of cell division orientation in the embryo. To show this, we simulate microtubules on actual cell surface shapes, from which we derive a minimal set of three rules for proper array orientation. The first rule captures the effects of cell shape alone on microtubule organization, the second rule describes the regulation of microtubule stability at cell edges, and the third rule includes the differential effect of auxin on local microtubule stability. These rules generate early embryonic division plane orientations and potentially offer a framework for understanding patterned cell divisions in plant morphogenesis.


Assuntos
Divisão Celular/fisiologia , Microtúbulos/fisiologia , Sementes/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Forma Celular/fisiologia , Simulação por Computador , Desenvolvimento Embrionário , Ácidos Indolacéticos/metabolismo , Meristema/metabolismo , Orientação Espacial , Células Vegetais/fisiologia , Desenvolvimento Vegetal , Raízes de Plantas/metabolismo
17.
Genes Dev ; 32(15-16): 1085-1100, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30018102

RESUMO

Continuous formation of somatic tissues in plants requires functional stem cell niches where undifferentiated cells are maintained. In Arabidopsis thaliana, PLETHORA (PLT) and SCARECROW (SCR) genes are outputs of apical-basal and radial patterning systems, and both are required for root stem cell specification and maintenance. The WUSCHEL-RELATED HOMEOBOX 5 (WOX5) gene is specifically expressed in and required for functions of a small group of root stem cell organizer cells, also called the quiescent center (QC). PLT and SCR are required for QC function, and their expression overlaps in the QC; however, how they specify the organizer has remained unknown. We show that PLT and SCR genetically and physically interact with plant-specific teosinte-branched cycloidea PCNA (TCP) transcription factors to specify the stem cell niche during embryogenesis and maintain organizer cells post-embryonically. PLT-TCP-SCR complexes converge on PLT-binding sites in the WOX5 promoter to induce expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Raízes de Plantas/genética , Nicho de Células-Tronco , Fatores de Transcrição/metabolismo , Arabidopsis/citologia , Arabidopsis/embriologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Expressão Gênica , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mutação , Raízes de Plantas/citologia , Raízes de Plantas/embriologia , Raízes de Plantas/crescimento & desenvolvimento , Domínios e Motivos de Interação entre Proteínas , Fatores de Transcrição/química , Fatores de Transcrição/genética
18.
Front Plant Sci ; 9: 639, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29868092

RESUMO

Protein complex formation has been extensively studied using Förster resonance energy transfer (FRET) measured by Fluorescence Lifetime Imaging Microscopy (FLIM). However, implementing this technology to detect protein interactions in living multicellular organism at single-cell resolution and under native condition is still difficult to achieve. Here we describe the optimization of the labeling conditions to detect FRET-FLIM in living plants. This study exemplifies optimization procedure involving the identification of the optimal position for the labels either at the N or C terminal region and the selection of the bright and suitable, fluorescent proteins as donor and acceptor labels for the FRET study. With an effective optimization strategy, we were able to detect the interaction between the stem cell regulators SHORT-ROOT and SCARECROW at endogenous expression levels in the root pole of living Arabidopsis embryos and developing lateral roots by FRET-FLIM. Using this approach we show that the spatial profile of interaction between two transcription factors can be highly modulated in reoccurring and structurally resembling organs, thus providing new information on the dynamic redistribution of nuclear protein complex configurations in different developmental stages. In principle, our optimization procedure for transcription factor complexes is applicable to any biological system.

19.
Dev Cell ; 45(3): 282-283, 2018 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-29738706

RESUMO

Precise coordination of cell differentiation and division within a tissue context is critical for plant development. In this issue of Developmental Cell, Han et al. (2018) report a transcriptional switch that ensures proper patterning, the final cell division, and terminal differentiation of stomata.


Assuntos
Arabidopsis , Diferenciação Celular , Proteínas de Arabidopsis/genética , Divisão Celular , Estômatos de Plantas
20.
Proc Natl Acad Sci U S A ; 115(24): E5624-E5633, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29844159

RESUMO

Stem cell specification in multicellular organisms relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, in which the evolutionarily conserved Mediator coactivator complex plays an essential role. In Arabidopsis thaliana, SHORTROOT (SHR) and SCARECROW (SCR) orchestrate a transcriptional program that determines the fate and asymmetrical divisions of stem cells generating the root ground tissue. The mechanism by which SHR/SCR relays context-specific regulatory signals to the Pol II general transcription machinery is unknown. Here, we report the role of Mediator in controlling the spatiotemporal transcriptional output of SHR/SCR during asymmetrical division of stem cells and ground tissue patterning. The Mediator subunit MED31 interacted with SCR but not SHR. Reduction of MED31 disrupted the spatiotemporal activation of CYCLIND6;1 (CYCD6;1), leading to defective asymmetrical division of stem cells generating ground tissue. MED31 was recruited to the promoter of CYCD6;1 in an SCR-dependent manner. MED31 was involved in the formation of a dynamic MED31/SCR/SHR ternary complex through the interface protein SCR. We demonstrate that the relative protein abundance of MED31 and SHR in different cell types regulates the dynamic formation of the ternary complex, which provides a tunable switch to strictly control the spatiotemporal transcriptional output. This study provides valuable clues to understand the mechanism by which master transcriptional regulators control organ patterning.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Complexo Mediador/genética , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Regiões Promotoras Genéticas/genética , Células-Tronco/fisiologia , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...