Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 18(10): 1241-1251, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430038

RESUMO

Crossing the blood-brain barrier in primates is a major obstacle for gene delivery to the brain. Adeno-associated viruses (AAVs) promise robust, non-invasive gene delivery from the bloodstream to the brain. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates. Here we report on AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques, which has improved delivery efficiency in the brains of multiple non-human primate species: marmoset, rhesus macaque and green monkey. CAP-Mac is neuron biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques and is vasculature biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver functional GCaMP for ex vivo calcium imaging across multiple brain areas, or a cocktail of fluorescent reporters for Brainbow-like labelling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. As such, CAP-Mac is shown to have potential for non-invasive systemic gene transfer in the brains of non-human primates.


Assuntos
Encéfalo , Callithrix , Humanos , Animais , Recém-Nascido , Chlorocebus aethiops , Macaca mulatta/genética , Callithrix/genética , Encéfalo/fisiologia , Técnicas de Transferência de Genes , Neurônios , Vetores Genéticos/genética
2.
Res Sq ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36789432

RESUMO

Adeno-associated viruses (AAVs) promise robust gene delivery to the brain through non-invasive, intravenous delivery. However, unlike in rodents, few neurotropic AAVs efficiently cross the blood-brain barrier in non-human primates (NHPs). Here we describe AAV.CAP-Mac, an engineered variant identified by screening in adult marmosets and newborn macaques with improved efficiency in the brain of multiple NHP species: marmoset, rhesus macaque, and green monkey. CAP-Mac is neuron-biased in infant Old World primates, exhibits broad tropism in adult rhesus macaques, and is vasculature-biased in adult marmosets. We demonstrate applications of a single, intravenous dose of CAP-Mac to deliver (1) functional GCaMP for ex vivo calcium imaging across multiple brain areas, and (2) a cocktail of fluorescent reporters for Brainbow-like labeling throughout the macaque brain, circumventing the need for germline manipulations in Old World primates. Given its capabilities for systemic gene transfer in NHPs, CAP-Mac promises to help unlock non-invasive access to the brain.

3.
Bioorg Med Chem Lett ; 19(17): 4924-8, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19648005

RESUMO

A screening campaign of a diverse collection of approximately 250,000 small molecule compounds was performed to identify inhibitors of proline-rich tyrosine kinase 2 (Pyk2) with potential osteogenic activity in osteoblast cells. Compounds were prioritized based on selectivity following a counter-screen against focal adhesion kinase (FAK), a closely related kinase. 4-Amino and 5-aryl substituted pyridinone series were identified that showed strong biochemical potency against Pyk2 and up to 3700-fold selectivity over FAK. Modeling analysis suggested that structural differences in the substrate binding cleft could explain the high selectivity of these chemical series against FAK. Representative compounds from each series showed inhibition of Pyk2 autophosphorylation in 293T cells (IC(50) approximately 0.11 microM), complete inhibition of endogenous Pyk2 in A7r5 cells and increased levels of osteogenic markers in MC3T3 osteoblast cells (EC(50)'s approximately 0.01 microM). These results revealed a new class of compounds with osteogenic-inducing activity in osteoblast cells and a starting point for the development of more potent and selective Pyk2 inhibitors.


Assuntos
Quinase 2 de Adesão Focal/antagonistas & inibidores , Osteoblastos/enzimologia , Inibidores de Proteínas Quinases/química , Piridonas/química , Animais , Sítios de Ligação , Linhagem Celular , Simulação por Computador , Quinase 2 de Adesão Focal/metabolismo , Humanos , Camundongos , Osteoblastos/efeitos dos fármacos , Fosforilação , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Piridonas/síntese química , Piridonas/farmacologia , Bibliotecas de Moléculas Pequenas , Relação Estrutura-Atividade
4.
J Pharmacol Exp Ther ; 308(2): 627-35, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14593085

RESUMO

Calcimimetic compounds, which activate the parathyroid cell Ca(2+) receptor (CaR) and inhibit parathyroid hormone (PTH) secretion, are under experimental study as a treatment for hyperparathyroidism. This report describes the salient pharmacodynamic properties, using several test systems, of a new calcimimetic compound, cinacalcet HCl. Cinacalcet HCl increased the concentration of cytoplasmic Ca(2+) ([Ca(2+)](i)) in human embryonic kidney 293 cells expressing the human parathyroid CaR. Cinacalcet HCl (EC(50) = 51 nM) in the presence of 0.5 mM extracellular Ca(2+) elicited increases in [Ca(2+)](i) in a dose- and calcium-dependent manner. Similarly, in the presence of 0.5 mM extracellular Ca(2+), cinacalcet HCl (IC(50) = 28 nM) produced a concentration-dependent decrease in PTH secretion from cultured bovine parathyroid cells. Using rat medullary thyroid carcinoma 6-23 cells expressing the CaR, cinacalcet HCl (EC(50) = 34 nM) produced a concentration-dependent increase in calcitonin secretion. In vivo studies in rats demonstrated cinacalcet HCl is orally bioavailable and displays approximately linear pharmacokinetics over the dose range of 1 to 36 mg/kg. Furthermore, this compound suppressed serum PTH and blood-ionized Ca(2+) levels and increased serum calcitonin levels in a dose-dependent manner. Cinacalcet was about 30-fold more potent at lowering serum levels of PTH than it was at increasing serum calcitonin levels. The S-enantiomer of cinacalcet (S-AMG 073) was at least 75-fold less active in these assay systems. The present findings provide compelling evidence that cinacalcet HCl is a potent and stereoselective activator of the parathyroid CaR and, as such, might be beneficial in the treatment of hyperparathyroidism.


Assuntos
Calcitonina/metabolismo , Naftalenos/farmacologia , Glândulas Paratireoides/efeitos dos fármacos , Hormônio Paratireóideo/metabolismo , Animais , Calcitonina/sangue , Cálcio/sangue , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Cinacalcete , Humanos , Masculino , Naftalenos/farmacocinética , Glândulas Paratireoides/metabolismo , Hormônio Paratireóideo/sangue , Fósforo/sangue , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...