Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol Evol ; 9(12): 3297-3311, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194520

RESUMO

The extent of genome divergence and the evolutionary events leading to speciation of marine bacteria have mostly been studied for (locally) abundant, free-living groups. The genus Phaeobacter is found on different marine surfaces, seems to occupy geographically disjunct habitats, and is involved in different biotic interactions, and was therefore targeted in the present study. The analysis of the chromosomes of 32 closely related but geographically spread Phaeobacter strains revealed an exceptionally large, highly syntenic core genome. The flexible gene pool is constantly but slightly expanding across all Phaeobacter lineages. The horizontally transferred genes mostly originated from bacteria of the Roseobacter group and horizontal transfer most likely was mediated by gene transfer agents. No evidence for geographic isolation and habitat specificity of the different phylogenomic Phaeobacter clades was detected based on the sources of isolation. In contrast, the functional gene repertoire and physiological traits of different phylogenomic Phaeobacter clades were sufficiently distinct to suggest an adaptation to an associated lifestyle with algae, to additional nutrient sources, or toxic heavy metals. Our study reveals that the evolutionary trajectories of surface-associated marine bacteria can differ significantly from free-living marine bacteria or marine generalists.


Assuntos
Cromossomos Bacterianos , Evolução Molecular , Genoma Bacteriano , Genômica/métodos , Rhodobacteraceae/genética , Adaptação Fisiológica , DNA Bacteriano , Filogenia , Rhodobacteraceae/classificação , Rhodobacteraceae/fisiologia , Sintenia
2.
ISME J ; 11(6): 1483-1499, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28106881

RESUMO

Marine Rhodobacteraceae (Alphaproteobacteria) are key players of biogeochemical cycling, comprise up to 30% of bacterial communities in pelagic environments and are often mutualists of eukaryotes. As 'Roseobacter clade', these 'roseobacters' are assumed to be monophyletic, but non-marine Rhodobacteraceae have not yet been included in phylogenomic analyses. Therefore, we analysed 106 genome sequences, particularly emphasizing gene sampling and its effect on phylogenetic stability, and investigated relationships between marine versus non-marine habitat, evolutionary origin and genomic adaptations. Our analyses, providing no unequivocal evidence for the monophyly of roseobacters, indicate several shifts between marine and non-marine habitats that occurred independently and were accompanied by characteristic changes in genomic content of orthologs, enzymes and metabolic pathways. Non-marine Rhodobacteraceae gained high-affinity transporters to cope with much lower sulphate concentrations and lost genes related to the reduced sodium chloride and organohalogen concentrations in their habitats. Marine Rhodobacteraceae gained genes required for fucoidan desulphonation and synthesis of the plant hormone indole 3-acetic acid and the compatible solutes ectoin and carnitin. However, neither plasmid composition, even though typical for the family, nor the degree of oligotrophy shows a systematic difference between marine and non-marine Rhodobacteraceae. We suggest the operational term 'Roseobacter group' for the marine Rhodobacteraceae strains.


Assuntos
Aclimatação/genética , DNA Bacteriano/genética , Evolução Molecular , Filogenia , Rhodobacteraceae/genética , Sequência de Bases , Ecossistema , Dados de Sequência Molecular
3.
Proc Natl Acad Sci U S A ; 113(35): 9882-7, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27535936

RESUMO

Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


Assuntos
Biotecnologia/métodos , Genoma Fúngico/genética , Genômica/métodos , Leveduras/genética , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/metabolismo , Evolução Molecular , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Código Genético/genética , Redes e Vias Metabólicas/genética , Filogenia , Especificidade da Espécie , Leveduras/classificação , Leveduras/metabolismo
4.
ISME J ; 10(10): 2498-513, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26953602

RESUMO

Alphaproteobacteria of the metabolically versatile Roseobacter group (Rhodobacteraceae) are abundant in marine ecosystems and represent dominant primary colonizers of submerged surfaces. Motility and attachment are the prerequisite for the characteristic 'swim-or-stick' lifestyle of many representatives such as Phaeobacter inhibens DSM 17395. It has recently been shown that plasmid curing of its 65-kb RepA-I-type replicon with >20 genes for exopolysaccharide biosynthesis including a rhamnose operon results in nearly complete loss of motility and biofilm formation. The current study is based on the assumption that homologous biofilm plasmids are widely distributed. We analyzed 33 roseobacters that represent the phylogenetic diversity of this lineage and documented attachment as well as swimming motility for 60% of the strains. All strong biofilm formers were also motile, which is in agreement with the proposed mechanism of surface attachment. We established transposon mutants for the four genes of the rhamnose operon from P. inhibens and proved its crucial role in biofilm formation. In the Roseobacter group, two-thirds of the predicted biofilm plasmids represent the RepA-I type and their physiological role was experimentally validated via plasmid curing for four additional strains. Horizontal transfer of these replicons was documented by a comparison of the RepA-I phylogeny with the species tree. A gene content analysis of 35 RepA-I plasmids revealed a core set of genes, including the rhamnose operon and a specific ABC transporter for polysaccharide export. Taken together, our data show that RepA-I-type biofilm plasmids are essential for the sessile mode of life in the majority of cultivated roseobacters.


Assuntos
Biofilmes , Óperon , Plasmídeos/genética , Ramnose/metabolismo , Roseobacter/fisiologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dados de Sequência Molecular , Filogenia , Plasmídeos/metabolismo , Replicon , Roseobacter/classificação , Roseobacter/genética , Roseobacter/isolamento & purificação
5.
Stand Genomic Sci ; 10: 17, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26203330

RESUMO

Roseovarius mucosus Biebl et al. 2005 is a bacteriochlorophyll a-producing representative of the marine Roseobacter group within the alphaproteobacterial family Rhodobacteraceae, which was isolated from the dinoflagellate Alexandrium ostenfeldii. The marine Roseobacter group was found to be abundant in the ocean and plays an important role for global and biogeochemical processes. Here we describe the features of the R. mucosus strain DFL-24(T) together with its genome sequence and annotation generated from a culture of DSM 17069(T). The 4,247,724 bp containing genome sequence encodes 4,194 protein-coding genes and 57 RNA genes. In addition to the presence of four plasmids, genome analysis revealed the presence of genes associated with host colonization, DMSP utilization, cytotoxins, and quorum sensing that could play a role in the interrelationship of R. mucosus with the dinoflagellate A. ostenfeldii and other marine organisms. Furthermore, the genome encodes genes associated with mixotrophic growth, where both reduced inorganic compounds for lithotrophic growth and a photoheterotrophic lifestyle using light as additional energy source could be used.

6.
Front Microbiol ; 6: 281, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25914684

RESUMO

In recent years a large number of isolates were obtained from saline environments that are phylogenetically related to distinct clades of oligotrophic marine gammaproteobacteria, which were originally identified in seawater samples using cultivation independent methods and are characterized by high seasonal abundances in coastal environments. To date a sound taxonomic framework for the classification of these ecologically important isolates and related species in accordance with their evolutionary relationships is missing. In this study we demonstrate that a reliable allocation of members of the oligotrophic marine gammaproteobacteria (OMG) group and related species to higher taxonomic ranks is possible by phylogenetic analyses of whole proteomes but also of the RNA polymerase beta subunit, whereas phylogenetic reconstructions based on 16S rRNA genes alone resulted in unstable tree topologies with only insignificant bootstrap support. The identified clades could be correlated with distinct phenotypic traits illustrating an adaptation to common environmental factors in their evolutionary history. Genome wide gene-content analyses revealed the existence of two distinct ecological guilds within the analyzed lineage of marine gammaproteobacteria which can be distinguished by their trophic strategies. Based on our results a novel order within the class Gammaproteobacteria is proposed, which is designated Cellvibrionales ord. nov. and comprises the five novel families Cellvibrionaceae fam. nov., Halieaceae fam. nov., Microbulbiferaceae fam. nov., Porticoccaceae fam. nov., and Spongiibacteraceae fam. nov.

7.
Stand Genomic Sci ; 9(3): 914-32, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197473

RESUMO

Phaeobacter gallaeciensis CIP 105210(T) (= DSM 26640(T) = BS107(T)) is the type strain of the species Phaeobacter gallaeciensis. The genus Phaeobacter belongs to the marine Roseobacter group (Rhodobacteraceae, Alphaproteobacteria). Phaeobacter species are effective colonizers of marine surfaces, including frequent associations with eukaryotes. Strain BS107(T) was isolated from a rearing of the scallop Pecten maximus. Here we describe the features of this organism, together with the complete genome sequence, comprising eight circular replicons with a total of 4,448 genes. In addition to a high number of extrachromosomal replicons, the genome contains six genomic island and three putative prophage regions, as well as a hybrid between a plasmid and a circular phage. Phylogenomic analyses confirm previous results, which indicated that the originally reported P. gallaeciensis type-strain deposit DSM 17395 belongs to P. inhibens and that CIP 105210(T) (= DSM 26640(T)) is the sole genome-sequenced representative of P. gallaeciensis.

8.
Stand Genomic Sci ; 9(3): 1105-17, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197486

RESUMO

Thermotoga thermarum Windberger et al. 1989 is a member to the genomically well characterized genus Thermotoga in the phylum 'Thermotogae'. T. thermarum is of interest for its origin from a continental solfataric spring vs. predominantly marine oil reservoirs of other members of the genus. The genome of strain LA3T also provides fresh data for the phylogenomic positioning of the (hyper-)thermophilic bacteria. T. thermarum strain LA3(T) is the fourth sequenced genome of a type strain from the genus Thermotoga, and the sixth in the family Thermotogaceae to be formally described in a publication. Phylogenetic analyses do not reveal significant discrepancies between the current classification of the group, 16S rRNA gene data and whole-genome sequences. Nevertheless, T. thermarum significantly differs from other Thermotoga species regarding its iron-sulfur cluster synthesis, as it contains only a minimal set of the necessary proteins. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,039,943 bp long chromosome with its 2,015 protein-coding and 51 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

9.
Front Microbiol ; 5: 416, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157246

RESUMO

Earlier phylogenetic analyses of the marine Rhodobacteraceae (class Alphaproteobacteria) genera Leisingera and Phaeobacter indicated that neither genus might be monophyletic. We here used phylogenetic reconstruction from genome-scale data, MALDI-TOF mass-spectrometry analysis and a re-assessment of the phenotypic data from the literature to settle this matter, aiming at a reclassification of the two genera. Neither Phaeobacter nor Leisingera formed a clade in any of the phylogenetic analyses conducted. Rather, smaller monophyletic assemblages emerged, which were phenotypically more homogeneous, too. We thus propose the reclassification of Leisingera nanhaiensis as the type species of a new genus as Sedimentitalea nanhaiensis gen. nov., comb. nov., the reclassification of Phaeobacter arcticus and Phaeobacter leonis as Pseudophaeobacter arcticus gen. nov., comb. nov. and Pseudophaeobacter leonis comb. nov., and the reclassification of Phaeobacter aquaemixtae, Phaeobacter caeruleus, and Phaeobacter daeponensis as Leisingera aquaemixtae comb. nov., Leisingera caerulea comb. nov., and Leisingera daeponensis comb. nov. The genera Phaeobacter and Leisingera are accordingly emended.

10.
Stand Genomic Sci ; 9: 2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780495

RESUMO

Although Escherichia coli is the most widely studied bacterial model organism and often considered to be the model bacterium per se, its type strain was until now forgotten from microbial genomics. As a part of the G enomic E ncyclopedia of B acteria and A rchaea project, we here describe the features of E. coli DSM 30083(T) together with its genome sequence and annotation as well as novel aspects of its phenotype. The 5,038,133 bp containing genome sequence includes 4,762 protein-coding genes and 175 RNA genes as well as a single plasmid. Affiliation of a set of 250 genome-sequenced E. coli strains, Shigella and outgroup strains to the type strain of E. coli was investigated using digital DNA:DNA-hybridization (dDDH) similarities and differences in genomic G+C content. As in the majority of previous studies, results show Shigella spp. embedded within E. coli and in most cases forming a single subgroup of it. Phylogenomic trees also recover the proposed E. coli phylotypes as monophyla with minor exceptions and place DSM 30083(T) in phylotype B2 with E. coli S88 as its closest neighbor. The widely used lab strain K-12 is not only genomically but also physiologically strongly different from the type strain. The phylotypes do not express a uniform level of character divergence as measured using dDDH, however, thus an alternative arrangement is proposed and discussed in the context of bacterial subspecies. Analyses of the genome sequences of a large number of E. coli strains and of strains from > 100 other bacterial genera indicate a value of 79-80% dDDH as the most promising threshold for delineating subspecies, which in turn suggests the presence of five subspecies within E. coli.

11.
Stand Genomic Sci ; 9: 10, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25780503

RESUMO

Planctomyces brasiliensis Schlesner 1990 belongs to the order Planctomycetales, which differs from other bacterial taxa by several distinctive features such as internal cell compartmentalization, multiplication by forming buds directly from the spherical, ovoid or pear-shaped mother cell and a cell wall consisting of a proteinaceous layer rather than a peptidoglycan layer. The first strains of P. brasiliensis, including the type strain IFAM 1448(T), were isolated from a water sample of Lagoa Vermelha, a salt pit near Rio de Janeiro, Brasil. This is the second completed genome sequence of a type strain of the genus Planctomyces to be published and the sixth type strain genome sequence from the family Planctomycetaceae. The 6,006,602 bp long genome with its 4,811 protein-coding and 54 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project. Phylogenomic analyses indicate that the classification within the Planctomycetaceae is partially in conflict with its evolutionary history, as the positioning of Schlesneria renders the genus Planctomyces paraphyletic. A re-analysis of published fatty-acid measurements also does not support the current arrangement of the two genera. A quantitative comparison of phylogenetic and phenotypic aspects indicates that the three Planctomyces species with type strains available in public culture collections should be placed in separate genera. Thus the genera Gimesia, Planctopirus and Rubinisphaera are proposed to accommodate P. maris, P. limnophilus and P. brasiliensis, respectively. Pronounced differences between the reported G + C content of Gemmata obscuriglobus, Singulisphaera acidiphila and Zavarzinella formosa and G + C content calculated from their genome sequences call for emendation of their species descriptions. In addition to other features, the range of G + C values reported for the genera within the Planctomycetaceae indicates that the descriptions of the family and the order should be emended.

12.
Stand Genomic Sci ; 8(2): 165-76, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991249

RESUMO

Spirochaeta africana Zhilina et al. 1996 is an anaerobic, aerotolerant, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain of the species, Z-7692(T), was isolated in 1993 or earlier from a bacterial bloom in the brine under the trona layer in a shallow lagoon of the alkaline equatorial Lake Magadi in Kenya. Here we describe the features of this organism, together with the complete genome sequence, and annotation. Considering the pending reclassification of S. caldaria to the genus Treponema, S. africana is only the second 'true' member of the genus Spirochaeta with a genome-sequenced type strain to be published. The 3,285,855 bp long genome of strain Z-7692(T) with its 2,817 protein-coding and 57 RNA genes is a part of the G enomic E ncyclopedia of B acteria and A rchaea project.

13.
Stand Genomic Sci ; 8(1): 88-105, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23961314

RESUMO

Spirochaeta caldaria Pohlschroeder et al. 1995 is an obligately anaerobic, spiral-shaped bacterium that is motile via periplasmic flagella. The type strain, H1(T), was isolated in 1990 from cyanobacterial mat samples collected at a freshwater hot spring in Oregon, USA, and is of interest because it enhances the degradation of cellulose when grown in co-culture with Clostridium thermocellum. Here we provide a taxonomic re-evaluation for S. caldaria based on phylogenetic analyses of 16S rRNA sequences and whole genomes, and propose the reclassification of S. caldaria and two other Spirochaeta species as members of the emended genus Treponema. Whereas genera such as Borrelia and Sphaerochaeta possess well-distinguished genomic features related to their divergent lifestyles, the physiological and functional genomic characteristics of Spirochaeta and Treponema appear to be intermixed and are of little taxonomic value. The 3,239,340 bp long genome of strain H1(T) with its 2,869 protein-coding and 59 RNA genes is a part of the G enomic E ncyclopedia of Bacteria and Archaea project.

14.
Stand Genomic Sci ; 6(2): 194-209, 2012 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-22768363

RESUMO

Spirochaeta coccoides Dröge et al. 2006 is a member of the genus Spirochaeta Ehrenberg 1835, one of the oldest named genera within the Bacteria. S. coccoides is an obligately anaerobic, Gram-negative, non-motile, spherical bacterium that was isolated from the hindgut contents of the termite Neotermes castaneus. The species is of interest because it may play an important role in the digestion of breakdown products from cellulose and hemicellulose in the termite gut. Here we provide a taxonomic re-evaluation for strain SPN1(T), and based on physiological and genomic characteristics, we propose its reclassification as a novel species in the genus Sphaerochaeta, a recently published sister group of the Spirochaeta. The 2,227,296 bp long genome of strain SPN1(T) with its 1,866 protein-coding and 58 RNA genes is a part of the Genomic Encyclopedia of Bacteria and Archaea project.

15.
PLoS One ; 6(7): e22252, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829452

RESUMO

BACKGROUND: The associations between pathogens and their hosts are complex and can result from any combination of evolutionary events such as codivergence, switching, and duplication of the pathogen. Mycoviruses are RNA viruses which infect fungi and for which natural vectors are so far unknown. Thus, lateral transfer might be improbable and codivergence their dominant mode of evolution. Accordingly, mycoviruses are a suitable target for statistical tests of virus-host codivergence, but inference of mycovirus phylogenies might be difficult because of low sequence similarity even within families. METHODOLOGY: We analyzed here the evolutionary dynamics of all mycovirus families by comparing virus and host phylogenies. Additionally, we assessed the sensitivity of the co-phylogenetic tests to the settings for inferring virus trees from their genome sequences and approximate, taxonomy-based host trees. CONCLUSIONS: While sequence alignment filtering modes affected branch support, the overall results of the co-phylogenetic tests were significantly influenced only by the number of viruses sampled per family. The trees of the two largest families, Partitiviridae and Totiviridae, were significantly more similar to those of their hosts than expected by chance, and most individual host-virus links had a significant positive impact on the global fit, indicating that codivergence is the dominant mode of virus diversification. However, in this regard mycoviruses did not differ from closely related viruses sampled from non-fungus hosts. The remaining virus families were either dominated by other evolutionary modes or lacked an apparent overall pattern. As this negative result might be caused by insufficient taxon sampling, the most parsimonious hypothesis still is that host-parasite evolution is basically the same in all mycovirus families. This is the first study of mycovirus-host codivergence, and the results shed light not only on how mycovirus biology affects their co-phylogenetic relationships, but also on their presumable host range itself.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Doenças das Plantas/genética , Doenças das Plantas/virologia , Vírus de RNA/genética , Teorema de Bayes , Especiação Genética , Filogenia , Vírus de RNA/classificação
16.
PLoS One ; 6(5): e20237, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21633497

RESUMO

BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.


Assuntos
Genoma Arqueal/genética , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Betaína/metabolismo , Biodiversidade , Análise por Conglomerados , Galactose/metabolismo , Variação Genética , Sedimentos Geológicos/microbiologia , Glucuronatos/metabolismo , Glicerol/metabolismo , Halobacteriaceae/classificação , Filogenia , Propionatos/metabolismo , Microbiologia do Solo , Especificidade da Espécie , Microbiologia da Água , Xilose/metabolismo
17.
Infect Genet Evol ; 10(7): 1075-84, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20624487

RESUMO

Recurrent outbreaks of H5N1 HPAIV occurred in several Central European countries in 2007. In-depth phylogenetic analyses which included full-length genomic sequences of the viruses involved were performed to elucidate possible origins of incursions and transmission pathways. Tree reconstructions as well as host-shift and ancestral area inferences were conducted in a maximum likelihood framework. All viruses belonged to a separate subgroup (termed "EMA-3") within clade 2.2, and, thus, were distinct from two lineages of HPAIV H5N1 viruses (termed "EMA-1" and "EMA-2") present in the same geographic area in 2006. Analysis of concatenated coding regions of all eight genome segments significantly improved resolution and robustness of the reconstructed phylogenies as compared to single gene analyses. At the same time, the methodological limits to establish retrospectively transmission networks in a comparatively small geographic region and spanning a short period of time became evident when only few corroborating field-epidemiological data are available. Ambiguities remained concerning the origin of the EMA-3 viruses from a region covering Southeast Germany and the Czech Republic as well as routes of spread to other European countries. AIV monitoring programmes in place for wild birds and poultry in these countries did not reveal presence of these viruses in either population. Host switches between domestic poultry and wild bird populations occurred several times. Analysis of outbreaks in Northeast Germany and nearby Northern Poland in December 2007 demonstrated that geographic and even temporal vicinity of outbreaks does not necessarily indicate a common source of incursion.


Assuntos
Aves , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Influenza Aviária/virologia , Animais , Animais Selvagens , Surtos de Doenças , Europa (Continente)/epidemiologia , Hemaglutininas/genética , Influenza Aviária/epidemiologia , Influenza Aviária/transmissão , Funções Verossimilhança , Neuraminidase/genética , Filogenia , Filogeografia , Fatores de Tempo
18.
Archaea ; 2010: 690737, 2010 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-21234345

RESUMO

Methanohalophilus mahii is the type species of the genus Methanohalophilus, which currently comprises three distinct species with validly published names. Mhp. mahii represents moderately halophilic methanogenic archaea with a strictly methylotrophic metabolism. The type strain SLP(T) was isolated from hypersaline sediments collected from the southern arm of Great Salt Lake, Utah. Here we describe the features of this organism, together with the complete genome sequence and annotation. The 2,012,424 bp genome is a single replicon with 2032 protein-coding and 63 RNA genes and part of the Genomic Encyclopedia of Bacteria and Archaea project. A comparison of the reconstructed energy metabolism in the halophilic species Mhp. mahii with other representatives of the Methanosarcinaceae reveals some interesting differences to freshwater species.


Assuntos
DNA Arqueal/genética , Genoma Arqueal , Sedimentos Geológicos/microbiologia , Redes e Vias Metabólicas/genética , Methanosarcinaceae/genética , Análise de Sequência de DNA , DNA Arqueal/química , Metabolismo Energético/genética , Methanosarcinaceae/isolamento & purificação , Dados de Sequência Molecular , Utah
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...