Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 10(3)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38535224

RESUMO

While Botrytis cinerea causes gray mold on many plants, its close relative, Botrytis fabae, is host-specifically infecting predominantly faba bean plants. To explore the basis for its narrow host range, a gapless genome sequence of B. fabae strain G12 (BfabG12) was generated. The BfabG12 genome encompasses 45.0 Mb, with 16 chromosomal telomere-to-telomere contigs that show high synteny and sequence similarity to the corresponding B. cinerea B05.10 (BcB0510) chromosomes. Compared to BcB0510, it is 6% larger, due to many AT-rich regions containing remnants of transposable elements, but encodes fewer genes (11,420 vs. 11,707), due to losses of chromosomal segments with up to 20 genes. The coding capacity of BfabG12 is further reduced by nearly 400 genes that had been inactivated by mutations leading to truncations compared to their BcB0510 orthologues. Several species-specific gene clusters for secondary metabolite biosynthesis with stage-specific expression were identified. Comparison of the proteins secreted during infection revealed high similarities, including 17 phytotoxic proteins that were detected in both species. Our data indicate that evolution of the host-specific B. fabae occurred from an ancestral pathogen with wide host range similar to B. cinerea and was accompanied by losses and degeneration of genes, thereby reducing its pathogenic flexibility.

2.
J Exp Bot ; 74(12): 3714-3728, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36951384

RESUMO

In the cytosol of plant cells, heat-induced protein aggregates are resolved by the CASEIN LYTIC PROTEINASE/HEAT SHOCK PROTEIN 100 (CLP/HSP100) chaperone family member HSP101, which is essential for thermotolerance. For the chloroplast family member CLPB3 this is less clear, with controversial reports on its role in conferring thermotolerance. To shed light on this issue, we have characterized two clpb3 mutants in Chlamydomonas reinhardtii. We show that chloroplast CLPB3 is required for resolving heat-induced protein aggregates containing stromal TRIGGER FACTOR (TIG1) and the small heat shock proteins 22E/F (HSP22E/F) in vivo, and for conferring thermotolerance under heat stress. Although CLPB3 accumulation is similar to that of stromal HSP70B under ambient conditions, we observed no prominent constitutive phenotypes. However, we found decreased accumulation of the PLASTID RIBOSOMAL PROTEIN L1 (PRPL1) and increased accumulation of the stromal protease DEG1C in the clpb3 mutants, suggesting that a reduction in chloroplast protein synthesis capacity and an increase in proteolytic capacity may compensate for loss of CLPB3 function. Under ambient conditions, CLPB3 was distributed throughout the chloroplast, but reorganized into stromal foci upon heat stress, which mostly disappeared during recovery. CLPB3 foci were localized next to HSP22E/F, which accumulated largely near the thylakoid membranes. This suggests a possible role for CLPB3 in disentangling protein aggregates from the thylakoid membrane system.


Assuntos
Chlamydomonas , Termotolerância , Agregados Proteicos , Chlamydomonas/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Cloroplastos/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo
3.
Plant Physiol ; 191(1): 125-141, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222581

RESUMO

According to their lifestyle, plant pathogens are divided into biotrophic and necrotrophic organisms. Biotrophic pathogens exclusively nourish living host cells, whereas necrotrophic pathogens rapidly kill host cells and nourish cell walls and cell contents. To this end, the necrotrophic fungus Botrytis cinerea secretes large amounts of phytotoxic proteins and cell wall-degrading enzymes. However, the precise role of these proteins during infection is unknown. Here, we report on the identification and characterization of the previously unknown toxic protein hypersensitive response-inducing protein 1 (Hip1), which induces plant cell death. We found the adoption of a structurally conserved folded Alternaria alternata Alt a 1 protein structure to be a prerequisite for Hip1 to exert its necrosis-inducing activity in a host-specific manner. Localization and the induction of typical plant defense responses by Hip1 indicate recognition as a pathogen-associated molecular pattern at the plant plasma membrane. In contrast to other secreted toxic Botrytis proteins, the activity of Hip1 does not depend on the presence of the receptor-associated kinases BRI1-associated kinase 1 and suppressor of BIR1-1. Our results demonstrate that recognition of Hip1, even in the absence of obvious enzymatic or pore-forming activity, induces strong plant defense reactions eventually leading to plant cell death. Botrytis hip1 overexpression strains generated by CRISPR/Cas9 displayed enhanced infection, indicating the virulence-promoting potential of Hip1. Taken together, Hip1 induces a noncanonical defense response which might be a common feature of structurally conserved fungal proteins from the Alt a 1 family.


Assuntos
Botrytis , Células Vegetais , Botrytis/metabolismo , Morte Celular , Virulência , Membrana Celular , Doenças das Plantas/microbiologia , Regulação da Expressão Gênica de Plantas
4.
PLoS Pathog ; 18(3): e1010367, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35239739

RESUMO

Botrytis cinerea is a major plant pathogen infecting more than 1400 plant species. During invasion, the fungus rapidly kills host cells, which is believed to be supported by induction of programmed plant cell death. To comprehensively evaluate the contributions of most of the currently known plant cell death inducing proteins (CDIPs) and metabolites for necrotrophic infection, an optimized CRISPR/Cas9 protocol was established which allowed to perform serial marker-free mutagenesis to generate multiple deletion mutants lacking up to 12 CDIPs. Whole genome sequencing of a 6x and 12x deletion mutant revealed a low number of off-target mutations which were unrelated to Cas9-mediated cleavage. Secretome analyses confirmed the loss of secreted proteins encoded by the deleted genes. Infection tests with the mutants revealed a successive decrease in virulence with increasing numbers of mutated genes, and varying effects of the knockouts on different host plants. Comparative analysis of mutants confirmed significant roles of two polygalacturonases (PG1, PG2) and the phytotoxic metabolites botrydial and botcinins for infection, but revealed no or only weak effects of deletion of the other CDIPs. Nicotiana benthamiana plants with mutated or silenced coreceptors of pattern recognition receptors, SOBIR1 and BAK1, showed similar susceptibility as control plants to infection by B. cinerea wild type and a 12x deletion mutant. These results raise doubts about a major role of manipulation of these plant defence regulators for B. cinerea infection. Despite the loss of most of the known phytotoxic compounds, the on planta secretomes of the multiple mutants retained substantial phytotoxic activity, proving that further, as yet unknown CDIPs contribute to necrosis and virulence. Our study has addressed for the first time systematically the functional redundancy of fungal virulence factors, and demonstrates that B. cinerea releases a highly redundant cocktail of proteins to achieve necrotrophic infection of a wide variety of host plants.


Assuntos
Botrytis , Nicotiana , Botrytis/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Plantas , Nicotiana/genética , Nicotiana/microbiologia , Virulência/genética
5.
Plant Cell Physiol ; 63(6): 785-801, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35348748

RESUMO

Fruit flesh cell vacuoles play a pivotal role in fruit growth and quality formation. In the present study, intact vacuoles were carefully released and collected from protoplasts isolated from flesh cells at five sampling times along fig fruit development. Label-free quantification and vacuole proteomic analysis identified 1,251 proteins, 1,137 of which were recruited as differentially abundant proteins (DAPs) by fold change ≥ 1.5, P < 0.05. DAPs were assigned to 10 functional categories; among them, 238, 186, 109, 93 and 90 were annotated as metabolism, transport proteins, membrane fusion or vesicle trafficking, protein fate and stress response proteins, respectively. Decreased numbers of DAPs were uncovered along fruit development. The overall changing pattern of DAPs revealed two major proteome landscape conversions in fig flesh cell vacuoles: the first occurred when fruit developed from late-stage I to mid-stage II, and the second occurred when the fruit started ripening. Metabolic proteins related to glycosidase, lipid and extracellular proteins contributing to carbohydrate storage and vacuole expansion, and protein-degrading proteins determining vacuolar lytic function were revealed. Key tonoplast proteins contributing to vacuole expansion, cell growth and fruit quality formation were also identified. The revealed comprehensive changes in the vacuole proteome during flesh development were compared with our previously published vacuole proteome of grape berry. The information expands our knowledge of the vacuolar proteome and the protein basis of vacuole functional evolution during fruit development and quality formation.


Assuntos
Ficus , Proteoma , Ficus/metabolismo , Frutas/metabolismo , Proteínas de Plantas/metabolismo , Proteoma/metabolismo , Proteômica , Vacúolos/metabolismo
6.
Plant Cell ; 34(3): 1075-1099, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34958373

RESUMO

Photosynthesis is a central determinant of plant biomass production, but its homeostasis is increasingly challenged by heat. Little is known about the sensitive regulatory principles involved in heat acclimation that underly the biogenesis and repair of chloroplast-encoded core subunits of photosynthetic complexes. Employing time-resolved ribosome and transcript profiling together with selective ribosome proteomics, we systematically deciphered these processes in chloroplasts of Chlamydomonas reinhardtii. We revealed protein biosynthesis and altered translation elongation as central processes for heat acclimation and showed that these principles are conserved between the alga and the flowering plant Nicotiana tabacum. Short-term heat exposure resulted in specific translational repression of chlorophyll a-containing core antenna proteins of photosystems I and II. Furthermore, translocation of ribosome nascent chain complexes to thylakoid membranes was affected, as reflected by the increased accumulation of stromal cpSRP54-bound ribosomes. The successful recovery of synthesizing these proteins under prolonged acclimation of nonlethal heat conditions was associated with specific changes of the co-translational protein interaction network, including increased ribosome association of chlorophyll biogenesis enzymes and acclimation factors responsible for complex assembly. We hypothesize that co-translational cofactor binding and targeting might be bottlenecks under heat but become optimized upon heat acclimation to sustain correct co-translational protein complex assembly.


Assuntos
Temperatura Alta , Biossíntese de Proteínas , Aclimatação , Clorofila A/metabolismo , Cloroplastos/metabolismo , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/metabolismo
7.
Plant Physiol ; 187(4): 2716-2730, 2021 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-34597404

RESUMO

Root growth and architecture are markedly influenced by both developmental and environmental cues. Sugars integrate different stimuli and are essential building blocks and signaling molecules for modulating the root system. Members from the SUGAR WILL EVENTUALLY BE EXPORTED TRANSPORTER (SWEET) family facilitate the transport of different sugars over cellular membranes and steer both inter and intracellular distribution of sugars. SWEET17 represents a fructose-specific sugar porter localized to the vacuolar membrane, the tonoplast. Here, we analyzed how SWEET17-dependent fructose released from vacuoles affects root growth during drought stress in Arabidopsis (Arabidopsis thaliana). We found that the SWEET17 gene was predominantly expressed in the root vasculature and in meristematic cells of the root tip. SWEET17 expression appeared markedly induced during lateral root (LR) outgrowth and under drought. Moreover, fructose repressed primary root growth but induced density and length of first order LRs. Consistently, sweet17 knock-out mutants exhibited reduced LR growth and a diminished expression of LR-development-related transcription factors during drought stress, resulting in impaired drought tolerance of sweet17 mutants. We discuss how SWEET17 activity integrates drought-induced cellular responses into fructose signaling necessary for modulation of the root system and maximal drought tolerance.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Secas , Proteínas de Membrana Transportadoras/genética , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Raízes de Plantas/genética
8.
J Exp Bot ; 72(20): 6867-6881, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34244747

RESUMO

The plant vacuole recycles proteins and RNA delivered to it by autophagy. In this study, by isolating intact vacuoles from Arabidopsis plants, followed by subsequent RNA purification, and deep sequencing, we provide a comprehensive characterization of Arabidopsis vacuolar RNAome. In the vacuolar RNAome, we detected ribosomal RNAs, transfer RNAs, including those of chloroplast origin, and in addition small RNA types. As autophagy is a main mechanism for the transport of RNA to the vacuole, atg5-1 mutants deficient in autophagy were included in our analysis. We observed severely reduced amounts of most chloroplast-derived RNA species in these mutants. Comparisons with cellular RNA composition provided an indication of possible up-regulation of alternative RNA breakdown pathways. By contrast, vacuolar RNA processing and composition in plants lacking vacuolar ribonuclease 2, involved in cellular RNA homeostasis, only showed minor alterations, possibly because of the presence of further so far unknown vacuolar RNase species. Among the small RNA types, we detected mature miRNAs in all vacuolar preparations but at much lower frequency in atg5-1, raising the possibility of a biological role for vacuolar miRNAs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Autofagia/genética , RNA , Vacúolos
9.
Plant Cell ; 33(9): 2935-2949, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34196712

RESUMO

Hydrogen peroxide (H2O2) is recognized as an important signaling molecule in plants. We sought to establish a genetically encoded, fluorescent H2O2 sensor that allows H2O2 monitoring in all major subcompartments of a Chlamydomonas cell. To this end, we used the Chlamydomonas Modular Cloning toolbox to target the hypersensitive H2O2 sensor reduction-oxidation sensitive green fluorescent protein2-Tsa2ΔCR to the cytosol, nucleus, mitochondrial matrix, chloroplast stroma, thylakoid lumen, and endoplasmic reticulum (ER). The sensor was functional in all compartments, except for the ER where it was fully oxidized. Employing our novel sensors, we show that H2O2 produced by photosynthetic linear electron transport (PET) in the stroma leaks into the cytosol but only reaches other subcellular compartments if produced under nonphysiological conditions. Furthermore, in heat-stressed cells, we show that cytosolic H2O2 levels closely mirror temperature up- and downshifts and are independent from PET. Heat stress led to similar up- and downshifts of H2O2 levels in the nucleus and, more mildly, in mitochondria but not in the chloroplast. Our results thus suggest the establishment of steep intracellular H2O2 gradients under normal physiological conditions with limited diffusion into other compartments. We anticipate that these sensors will greatly facilitate future investigations of H2O2 biology in plant cells.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Peróxido de Hidrogênio/metabolismo , Transporte de Elétrons , Mitocôndrias/metabolismo , Oxirredução
10.
Front Plant Sci ; 12: 652434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936137

RESUMO

Pyrimidine de novo synthesis is an essential pathway in all organisms. The final and rate-limiting step in the synthesis of the nucleotide cytidine triphosphate (CTP) is catalyzed by CTP synthase (CTPS), and Arabidopsis harbors five isoforms. Single mutant lines defective in each one of the four isoforms do not show apparent phenotypical alterations in comparison to wild-type plants. However, Arabidopsis lines that contain T-DNA insertions in the CTPS2 gene were unable to produce homozygous offspring. Here, we show that CTPS2 exhibits a distinct expression pattern throughout embryo development, and loss-of-function mutants are embryo lethal, as siliques from +/ctps2 plants contained nearly 25% aborted seeds. This phenotype was rescued by complementation with CTPS2 under control of its endogenous promoter. CTPS2::GFP lines revealed expression only in the tip of columella cells in embryo root tips of the heart and later stages. Furthermore, CTPS2 expression in mature roots, most pronounced in the columella cells, shoots, and vasculature tissue of young seedlings, was observed. Filial generations of +/ctps2 plants did not germinate properly, even under external cytidine supply. During embryo development, the CTPS2 expression pattern resembled the established auxin reporter DR5::GFP. Indeed, the cloned promoter region we used in this study possesses a repeat of an auxin response element, and auxin supply increased CTPS2 expression in a cell-type-specific manner. Thus, we conclude that CTPS2 is essential for CTP supply in developing embryos, and loss-of-function mutants in CTPS2 are embryo lethal.

11.
Plant Signal Behav ; 16(8): 1922796, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-33938395

RESUMO

In the physiological range, the phytohormone auxin inhibits the growth of underground tissues. In the roots of Arabidopsis thaliana, cell size inhibition has been shown to be accompanied by auxin-mediated reduction of vacuole size. A tonoplast-localized protein family (Networked 4) with actin-binding capacity was demonstrated to modulate the compactness of the vacuole. Overexpression of NET4A led to smaller, more spherical and compact vacuoles, which occupied less cellular space compared to wild type. This reduction of vacuolar occupancy is similar to the observed auxin-induced decrease in occupancy, albeit there are enormous morphological differences. Here, we show that a net4a net4b double mutant and a NET4A overexpressor line are still sensitive to auxin-induced vacuolar constrictions. However, the overexpressor showed a partial auxin resistance accompanied by more compact vacuoles, thereby indicating an additional regulatory mechanism. Furthermore, we show that other NET superfamily members do not compensate for the loss of NET4A and NET4B expression on the transcriptional level. This leads us to hypothesize that regulation of vacuole size is a general mechanism to regulate cell expansion and that other players besides NET4 must participate in regulating the vacuole-cytoskeleton interface.


Assuntos
Citoesqueleto de Actina , Actinas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Processos de Crescimento Celular , Raízes de Plantas/citologia , Vacúolos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/ultraestrutura , Ácidos Indolacéticos/metabolismo , Microtúbulos , Células Vegetais , Desenvolvimento Vegetal , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/ultraestrutura
12.
PLoS Pathog ; 16(8): e1008326, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32804988

RESUMO

CRISPR/Cas has become the state-of-the-art technology for genetic manipulation in diverse organisms, enabling targeted genetic changes to be performed with unprecedented efficiency. Here we report on the first establishment of robust CRISPR/Cas editing in the important necrotrophic plant pathogen Botrytis cinerea based on the introduction of optimized Cas9-sgRNA ribonucleoprotein complexes (RNPs) into protoplasts. Editing yields were further improved by development of a novel strategy that combines RNP delivery with cotransformation of transiently stable vectors containing telomeres, which allowed temporary selection and convenient screening for marker-free editing events. We demonstrate that this approach provides superior editing rates compared to existing CRISPR/Cas-based methods in filamentous fungi, including the model plant pathogen Magnaporthe oryzae. Genome sequencing of edited strains revealed very few additional mutations and no evidence for RNP-mediated off-targeting. The high performance of telomere vector-mediated editing was demonstrated by random mutagenesis of codon 272 of the sdhB gene, a major determinant of resistance to succinate dehydrogenase inhibitor (SDHI) fungicides by in bulk replacement of the codon 272 with codons encoding all 20 amino acids. All exchanges were found at similar frequencies in the absence of selection but SDHI selection allowed the identification of novel amino acid substitutions which conferred differential resistance levels towards different SDHI fungicides. The increased efficiency and easy handling of RNP-based cotransformation is expected to accelerate molecular research in B. cinerea and other fungi.


Assuntos
Botrytis/fisiologia , Sistemas CRISPR-Cas , Edição de Genes , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ribonucleoproteínas/antagonistas & inibidores , Telômero/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Oryza/genética , Doenças das Plantas/genética , Ribonucleoproteínas/genética
14.
Front Plant Sci ; 11: 553, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457785

RESUMO

Cell division and cell elongation are fundamental processes for growth. In contrast to animal cells, plant cells are surrounded by rigid walls and therefore loosening of the wall is required during elongation. On the other hand, vacuole size has been shown to correlate with cell size and inhibition of vacuolar expansion limits cell growth. However, the specific role of the vacuole during cell elongation is still not fully resolved. Especially the question whether the vacuole is the leading unit during cellular growth or just passively expands upon water uptake remains to be answered. Here, we review recent findings about the contribution of the vacuole to cell elongation. In addition, we also discuss the connection between cell wall status and vacuolar morphology. In particular, we focus on the question whether vacuolar size is dictated by cell size or vice versa and share our personnel view about the sequential steps during cell elongation.

15.
Plants (Basel) ; 9(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245198

RESUMO

Since plants lack specialized immune cells, each cell has to defend itself independently against a plethora of different pathogens. Therefore, successful plant defense strongly relies on precise and efficient regulation of intracellular processes in every single cell. Smooth trafficking within the plant endomembrane is a prerequisite for a diverse set of immune responses. Pathogen recognition, signaling into the nucleus, cell wall enforcement, secretion of antimicrobial proteins and compounds, as well as generation of reactive oxygen species, all heavily depend on vesicle transport. In contrast, pathogens have developed a variety of different means to manipulate vesicle trafficking to prevent detection or to inhibit specific plant responses. Intriguingly, the plant endomembrane system exhibits remarkable plasticity upon pathogen attack. Unconventional trafficking pathways such as the formation of endoplasmic reticulum (ER) bodies or fusion of the vacuole with the plasma membrane are initiated and enforced as the counteraction. Here, we review the recent findings on unconventional and defense-induced trafficking pathways as the plant´s measures in response to pathogen attack. In addition, we describe the endomembrane system manipulations by different pathogens, with a focus on tethering and fusion events during vesicle trafficking.

16.
Int J Mol Sci ; 20(19)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31557830

RESUMO

The dimension of the plants largest organelle-the vacuole-plays a major role in defining cellular elongation rates. The morphology of the vacuole is controlled by the actin cytoskeleton, but molecular players remain largely unknown. Recently, the Networked (NET) family of membrane-associated, actin-binding proteins has been identified. Here, we show that NET4A localizes to highly constricted regions of the vacuolar membrane and contributes to vacuolar morphology. Using genetic interference, we found that deregulation of NET4 abundance increases vacuolar occupancy, and that overexpression of NET4 abundance decreases vacuolar occupancy. Our data reveal that NET4A induces more compact vacuoles, correlating with reduced cellular and organ growth in Arabidopsis thaliana.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Vacúolos/metabolismo , Genes Reporter , Fenótipo , Proteínas Recombinantes
17.
New Phytol ; 219(3): 1062-1074, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29790574

RESUMO

The Botrytis cinerea VELVET complex regulates light-dependent development and virulence. The goal of this study was to identify common virulence defects of several VELVET mutants and to reveal their molecular basis. Growth, differentiation, physiology, gene expression and infection of fungal strains were analyzed, and quantitative comparisons of in planta transcriptomes and secretomes were performed. VELVET mutants showed reduced release of citric acid, the major acid secreted by the wild-type, whereas no significant role for oxalic acid was observed. Furthermore, a common set of infection-related and secreted proteins was strongly underexpressed in the mutants. Quantitative secretome analysis with 15 N metabolic labeling revealed a correlation of changes in protein and mRNA levels between wild-type and mutants, indicating that transcript levels determine the abundance of secreted proteins. Infection sites kept at low pH partially restored lesion expansion and expression of virulence genes by the mutants. Drastic downregulation of proteases in the mutants was correlated with incomplete degradation of cellular host proteins at the infection site, but no evidence was obtained that aspartyl proteases are required for lesion formation. The B. cinerea VELVET complex controls pathogenic differentiation by regulating organic acid secretion, host tissue acidification, gene expression and protein secretion.


Assuntos
Ácidos/metabolismo , Botrytis/patogenicidade , Proteínas Fúngicas/metabolismo , Interações Hospedeiro-Patógeno , Mutação/genética , Botrytis/genética , Ácido Cítrico/metabolismo , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Concentração de Íons de Hidrogênio , Fenótipo , Ligação Proteica , Transcrição Gênica , Transcriptoma/genética , Virulência
18.
Proc Natl Acad Sci U S A ; 113(2): 452-7, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26715743

RESUMO

The cytoskeleton is an early attribute of cellular life, and its main components are composed of conserved proteins. The actin cytoskeleton has a direct impact on the control of cell size in animal cells, but its mechanistic contribution to cellular growth in plants remains largely elusive. Here, we reveal a role of actin in regulating cell size in plants. The actin cytoskeleton shows proximity to vacuoles, and the phytohormone auxin not only controls the organization of actin filaments but also impacts vacuolar morphogenesis in an actin-dependent manner. Pharmacological and genetic interference with the actin-myosin system abolishes the effect of auxin on vacuoles and thus disrupts its negative influence on cellular growth. SEM-based 3D nanometer-resolution imaging of the vacuoles revealed that auxin controls the constriction and luminal size of the vacuole. We show that this actin-dependent mechanism controls the relative vacuolar occupancy of the cell, thus suggesting an unanticipated mechanism for cytosol homeostasis during cellular growth.


Assuntos
Actinas/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Vacúolos/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Arabidopsis/efeitos dos fármacos , Imageamento Tridimensional , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Meristema/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Modelos Moleculares , Mutação/genética , Miosinas/metabolismo , Fosfatidilinositóis/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/efeitos dos fármacos , Estabilidade Proteica/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Vacúolos/ultraestrutura
19.
J Exp Bot ; 66(16): 5103-12, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26041320

RESUMO

The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Epiderme Vegetal/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Células Vegetais/metabolismo , Células Vegetais/ultraestrutura , Epiderme Vegetal/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Transporte Proteico
20.
Elife ; 42015 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-25742605

RESUMO

The control of cellular growth is central to multicellular patterning. In plants, the encapsulating cell wall literally binds neighbouring cells to each other and limits cellular sliding/migration. In contrast to its developmental importance, growth regulation is poorly understood in plants. Here, we reveal that the phytohormone auxin impacts on the shape of the biggest plant organelle, the vacuole. TIR1/AFBs-dependent auxin signalling posttranslationally controls the protein abundance of vacuolar SNARE components. Genetic and pharmacological interference with the auxin effect on vacuolar SNAREs interrelates with auxin-resistant vacuolar morphogenesis and cell size regulation. Vacuolar SNARE VTI11 is strictly required for auxin-reliant vacuolar morphogenesis and loss of function renders cells largely insensitive to auxin-dependent growth inhibition. Our data suggests that the adaptation of SNARE-dependent vacuolar morphogenesis allows auxin to limit cellular expansion, contributing to root organ growth rates.


Assuntos
Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas SNARE/metabolismo , Vacúolos/metabolismo , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Tamanho Celular/efeitos dos fármacos , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Immunoblotting , Ácidos Indolacéticos/farmacologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia Confocal , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Plantas Geneticamente Modificadas , Proteínas Qb-SNARE/genética , Proteínas Qb-SNARE/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Proteínas SNARE/genética , Vacúolos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA