Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Exp Eye Res ; 240: 109828, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38354944

RESUMO

Transport of water is critical for maintaining the transparency of the avascular lens, and the lens is known to express at least five distinctly different water channels from the Aquaporin (AQP) family of proteins. In this study we report on the identification of a sixth lens AQP, AQP3 an aquaglyceroporin, which in addition to water also transports glycerol and H2O2. AQP3 was identified at the transcript level and protein levels using RT-PCR and Western blotting, respectively, in the mouse, rat, bovine and human lens, showing that its expression is conserved in the mammalian lens. Western blotting showed AQP3 in the lens exists as 25 kDa non-glycosylated and 37 kDa glycosylated monomeric forms in all lens species. To identify the regions in the lens where AQP3 is expressed Western blotting was repeated using epithelial, outer cortical and inner cortical/core fractions isolated from the mouse lens. AQP3 was found in all lens regions, with the highest signal of non-glycosylated AQP3 being found in the epithelium. While in the inner cortex/core region AQP3 signal was not only lower but was predominately from the glycosylated form of AQP3. Immunolabelling of lens sections with AQP3 antibodies confirmed that AQP3 is found in all regions of the adult mouse, and also revealed that the subcellular distribution of AQP3 changes as a function of fiber cell differentiation. In epithelial and peripheral fiber cells of the outer cortex AQP3 labelling was predominately associated with membrane vesicles in the cytoplasm, but in the deeper regions of the lens AQP3 labelling was associated with the plasma membranes of fiber cells located in the inner cortex and core of the lens. To determine how this adult pattern of AQP3 subcellular distribution was established, immunolabelling for AQP3 was performed on embryonic and postnatal lenses. AQP3 expression was first detected on embryonic day (E) 11 in the membranes of primary fiber cells that have started to elongate and fill the lumen of the lens vesicle, while later at E16 the AQP3 labelling in the primary fiber cells had shifted to a predominately cytoplasmic location. In the following postnatal (P) stages of lens growth at P3 and P6, AQP3 labelling remained cytoplasmic across all regions of the lens and it was not until P15 when the pattern of localisation of AQP3 changed to an adult distribution with cytoplasmic labelling detected in the outer cortex and membrane localisation detected in the inner cortex and core of the lens. Comparison of the AQP3 labelling pattern to those obtained previously for AQP0 and AQP5 showed that the subcellular distribution was more similar to AQP5 than AQP0, but there were still significant differences that suggest AQP3 may have unique roles in the maintenance of lens transparency.


Assuntos
Aquaporina 3 , Cristalino , Animais , Bovinos , Humanos , Camundongos , Ratos , Aquagliceroporinas/metabolismo , Aquaporina 3/genética , Aquaporina 3/metabolismo , Peróxido de Hidrogênio/metabolismo , Cristalino/metabolismo , Mamíferos , Água/metabolismo
2.
mSystems ; 9(1): e0109823, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38059647

RESUMO

Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.


Assuntos
Gastrite Atrófica , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Lesões Pré-Cancerosas , Neoplasias Gástricas , Animais , Humanos , Gastrite Atrófica/induzido quimicamente , Neoplasias Gástricas/patologia , Gerbillinae , Mucosa Gástrica/patologia , Gastrite/patologia , Atrofia/patologia , Infecções por Helicobacter/complicações , Lesões Pré-Cancerosas/patologia , Carcinogênese/patologia
3.
J Physiol ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37843390

RESUMO

The ocular lens is an important determinant of overall vision quality whose refractive and transparent properties change throughout life. The lens operates an internal microcirculation system that generates circulating fluxes of ions, water and nutrients that maintain the transparency and refractive properties of the lens. This flow of water generates a substantial hydrostatic pressure gradient which is regulated by a dual feedback system that uses the mechanosensitive channels TRPV1 and TRPV4 to sense decreases and increases, respectively, in the pressure gradient. This regulation of water flow (pressure) and hence overall lens water content, sets the two key parameters, lens geometry and the gradient of refractive index, which determine the refractive properties of the lens. Here we focus on the roles played by the aquaporin family of water channels in mediating lens water fluxes, with a specific focus on AQP5 as a regulated water channel in the lens. We show that in addition to regulating the activity of ion transporters, which generate local osmotic gradients that drive lens water flow, the TRPV1/4-mediated dual feedback system also modulates the membrane trafficking of AQP5 in the anterior influx pathway and equatorial efflux zone of the lens. Since both lens pressure and AQP5-mediated water permeability ( P H 2 O ${P_{{{\mathrm{H}}_{\mathrm{2}}}{\mathrm{O}}}}$ ) can be altered by changes in the tension applied to the lens surface via modulating ciliary muscle contraction we propose extrinsic modulation of lens water flow as a potential mechanism to alter the refractive properties of the lens to ensure light remains focused on the retina throughout life.

4.
Redox Biol ; 66: 102869, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37677999

RESUMO

The lens proteome undergoes dramatic composition changes during development and maturation. A defective developmental process leads to congenital cataracts that account for about 30% of cases of childhood blindness. Gene mutations are associated with approximately 50% of early-onset forms of lens opacity, with the remainder being of unknown etiology. To gain a better understanding of cataractogenesis, we utilized a transgenic mouse model expressing a mutant ubiquitin protein in the lens (K6W-Ub) that recapitulates most of the early pathological changes seen in human congenital cataracts. We performed mass spectrometry-based tandem-mass-tag quantitative proteomics in E15, P1, and P30 control or K6W-Ub lenses. Our analysis identified targets that are required for early normal differentiation steps and altered in cataractous lenses, particularly metabolic pathways involving glutathione and amino acids. Computational molecular phenotyping revealed that glutathione and taurine were spatially altered in the K6W-Ub cataractous lens. High-performance liquid chromatography revealed that both taurine and the ratio of reduced glutathione to oxidized glutathione, two indicators of redox status, were differentially compromised in lens biology. In sum, our research documents that dynamic proteome changes in a mouse model of congenital cataracts impact redox biology in lens. Our findings shed light on the molecular mechanisms associated with congenital cataracts and point out that unbalanced redox status due to reduced levels of taurine and glutathione, metabolites already linked to age-related cataract, could be a major underlying mechanism behind lens opacities that appear early in life.


Assuntos
Catarata , Proteoma , Humanos , Animais , Camundongos , Glutationa , Modelos Animais de Doenças , Camundongos Transgênicos , Proteínas Mutantes , Oxirredução , Taurina , Catarata/genética
5.
Invest Ophthalmol Vis Sci ; 64(11): 28, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37603353

RESUMO

Purpose: Lens transparency relies on the precise organization of lens fiber cells. The formation of the highly ordered lens architecture results from not only cell-cell adhesion along the lateral interfaces, but also from proper organization of fiber cells tips at lens sutures. Little is known about the cell adhesion between fiber tips at the sutures. The purpose of this study is to map suture-specific protein distributions. Methods: Tissue sections were obtained from fresh frozen bovine lenses and washes were performed to remove soluble proteins and to retain membrane and membrane associated proteins. Imaging mass spectrometry (IMS) combined with on-tissue trypsin digestion was used to visualize protein spatial distributions. Sutures and adjacent regions were captured by laser capture microdissection and samples were digested by trypsin. Proteins were analyzed by liquid chromatography tandem MS and quantified by label-free quantification. Protein spatial distributions were confirmed by immunofluorescence. Results: IMS results showed enrichment of adherens junction proteins cadherin-2 and armadillo repeat gene deleted in velo-cardio-facial syndrome (ARVCF) in both anterior and posterior sutures of bovine lenses. Liquid chromatography tandem MS confirmed higher expression of cadherin-2 and ARVCF and other adherens junction proteins including catenin α2 (CTNNA2) and catenin ß1 (CTNNB1) in sutures. In contrast, IMS indicated low expression of gap junction protein connexin 50 and connexin 46 in the suture regions. The localization of cadherin-2 and connexin 50 was confirmed by immunofluorescence. Conclusions: The complementary expression of adherens junction proteins and gap junction proteins in lens suture regions implicates adherens junctions in fiber cell tip adhesion and in maintaining the integrity of the lens.


Assuntos
Junções Intercelulares , Proteômica , Animais , Bovinos , Tripsina , Caderinas , Cateninas
6.
Artigo em Inglês | MEDLINE | ID: mdl-37465097

RESUMO

With the confounding effects of demographics across large-scale imaging surveys, substantial variation is demonstrated with the volumetric structure of orbit and eye anthropometry. Such variability increases the level of difficulty to localize the anatomical features of the eye organs for populational analysis. To adapt the variability of eye organs with stable registration transfer, we propose an unbiased eye atlas template followed by a hierarchical coarse-to-fine approach to provide generalized eye organ context across populations. Furthermore, we retrieved volumetric scans from 1842 healthy patients for generating an eye atlas template with minimal biases. Briefly, we select 20 subject scans and use an iterative approach to generate an initial unbiased template. We then perform metric-based registration to the remaining samples with the unbiased template and generate coarse registered outputs. The coarse registered outputs are further leveraged to train a deep probabilistic network, which aims to refine the organ deformation in unsupervised setting. Computed tomography (CT) scans of 100 de-identified subjects are used to generate and evaluate the unbiased atlas template with the hierarchical pipeline. The refined registration shows the stable transfer of the eye organs, which were well-localized in the high-resolution (0.5 mm3) atlas space and demonstrated a significant improvement of 2.37% Dice for inverse label transfer performance. The subject-wise qualitative representations with surface rendering successfully demonstrate the transfer details of the organ context and showed the applicability of generalizing the morphological variation across patients.

7.
Adv Exp Med Biol ; 1415: 3-7, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440006

RESUMO

Pathologies of the retina are clinically visualized in vivo with OCT and ex vivo with immunohistochemistry. Although both techniques provide valuable information on prognosis and disease state, a comprehensive method for fully elucidating molecular constituents present in locations of interest is desirable. The purpose of this work was to use multimodal imaging technologies to localize the vast number of molecular species observed with matrix-assisted laser desorption ionization imaging mass spectrometry (MALDI IMS) in aged and diseased retinal tissues. Herein, MALDI IMS was utilized to observe molecular species that reside in photoreceptor cells and also a basal laminar deposit from two human donor eyes. The molecular species observed to accumulate in these discrete regions can be further identified and studied to attempt to gain a greater understanding of biological processes occurring in debilitating eye diseases such as age-related macular degeneration (AMD).


Assuntos
Degeneração Macular , Humanos , Idoso , Degeneração Macular/diagnóstico por imagem , Degeneração Macular/patologia , Retina/patologia , Membrana Basal , Células Fotorreceptoras/patologia , Espectrometria de Massas
8.
Adv Exp Med Biol ; 1415: 37-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440011

RESUMO

The molecular characterization of extracellular deposits is crucial to understanding the clinical progression of AMD. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis is a powerful analytical discovery tool capable of identifying lipids in an untargeted manner. NanoLC-MS/MS is an analytical tool capable of identifying lipids with high sensitivity and minimum sample usage. Hence, the purpose of this study was to compare retina lipid identification from RPE-choroid samples using high flow LC-MS/MS and nanoLC-MS/MS. Manually dissected paraformaldehyde-fixed human donor tissues sections were used for LC-MS/MS and nanoLC-MS/MS analysis. Lipids were extracted with MeOH/MTBE/CHCl3 (MMC) and were analyzed by LC-MS/MS and nanoLC-MS/MS using negative and positive ionization modes. Untargeted lipidomics using LC-MS/MS identified 215 lipids from 4 lipid classes and 15 subclasses. We observed a 78% increase in lipid identifications using nanoLC-MS/MS with lipid numbers totaling 384. The nanoLC-MS/MS method is expected to provide extensive lipid identifications from small retina samples, e.g., from drusen and drusenoid deposits in aged and AMD eyes, and could help elucidate how lipids are involved in extracellular deposit formation in AMD.


Assuntos
Degeneração Macular , Espectrometria de Massas em Tandem , Humanos , Idoso , Cromatografia Líquida/métodos , Lipidômica , Retina , Lipídeos/química
9.
Gastroenterology ; 165(3): 656-669.e8, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37271289

RESUMO

BACKGROUND & AIMS: The amino acid hypusine, synthesized from the polyamine spermidine by the enzyme deoxyhypusine synthase (DHPS), is essential for the activity of eukaryotic translation initiation factor 5A (EIF5A). The role of hypusinated EIF5A (EIF5AHyp) remains unknown in intestinal homeostasis. Our aim was to investigate EIF5AHyp in the gut epithelium in inflammation and carcinogenesis. METHODS: We used human colon tissue messenger RNA samples and publicly available transcriptomic datasets, tissue microarrays, and patient-derived colon organoids. Mice with intestinal epithelial-specific deletion of Dhps were investigated at baseline and in models of colitis and colon carcinogenesis. RESULTS: We found that patients with ulcerative colitis and Crohn's disease exhibit reduced colon levels of DHPS messenger RNA and DHPS protein and reduced levels of EIF5AHyp. Similarly, colonic organoids from colitis patients also show down-regulated DHPS expression. Mice with intestinal epithelial-specific deletion of Dhps develop spontaneous colon hyperplasia, epithelial proliferation, crypt distortion, and inflammation. Furthermore, these mice are highly susceptible to experimental colitis and show exacerbated colon tumorigenesis when treated with a carcinogen. Transcriptomic and proteomic analysis on colonic epithelial cells demonstrated that loss of hypusination induces multiple pathways related to cancer and immune response. Moreover, we found that hypusination enhances translation of numerous enzymes involved in aldehyde detoxification, including glutathione S-transferases and aldehyde dehydrogenases. Accordingly, hypusination-deficient mice exhibit increased levels of aldehyde adducts in the colon, and their treatment with a scavenger of electrophiles reduces colitis. CONCLUSIONS: Hypusination in intestinal epithelial cells has a key role in the prevention of colitis and colorectal cancer, and enhancement of this pathway via supplementation of spermidine could have a therapeutic impact.


Assuntos
Colite , Espermidina , Humanos , Animais , Camundongos , Espermidina/farmacologia , Espermidina/metabolismo , Proteômica , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Carcinogênese/genética , Colite/induzido quimicamente , Colite/genética , Colite/prevenção & controle , Homeostase , Inflamação
10.
Int J Mol Sci ; 24(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37240426

RESUMO

In mice, the contraction of the ciliary muscle via the administration of pilocarpine reduces the zonular tension applied to the lens and activates the TRPV1-mediated arm of a dual feedback system that regulates the lens' hydrostatic pressure gradient. In the rat lens, this pilocarpine-induced reduction in zonular tension also causes the water channel AQP5 to be removed from the membranes of fiber cells located in the anterior influx and equatorial efflux zones. Here, we determined whether this pilocarpine-induced membrane trafficking of AQP5 is also regulated by the activation of TRPV1. Using microelectrode-based methods to measure surface pressure, we found that pilocarpine also increased pressure in the rat lenses via the activation of TRPV1, while pilocarpine-induced removal of AQP5 from the membrane observed using immunolabelling was abolished by pre-incubation of the lenses with a TRPV1 inhibitor. In contrast, mimicking the actions of pilocarpine by blocking TRPV4 and then activating TRPV1 resulted in sustained increase in pressure and the removal of AQP5 from the anterior influx and equatorial efflux zones. These results show that the removal of AQP5 in response to a decrease in zonular tension is mediated by TRPV1 and suggest that regional changes to PH2O contribute to lens hydrostatic pressure gradient regulation.


Assuntos
Aquaporinas , Cristalino , Ratos , Camundongos , Animais , Pilocarpina/farmacologia , Membranas , Aquaporina 5 , Canais de Cátion TRPV
11.
Mol Cell Proteomics ; 22(1): 100453, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36470534

RESUMO

The eye lens is responsible for focusing and transmitting light to the retina. The lens does this in the absence of organelles, yet maintains transparency for at least 5 decades before onset of age-related nuclear cataract (ARNC). It is hypothesized that oxidative stress contributes significantly to ARNC formation. It is in addition hypothesized that transparency is maintained by a microcirculation system that delivers antioxidants to the lens nucleus and exports small molecule waste. Common data-dependent acquisition methods are hindered by dynamic range of lens protein expression and provide limited context to age-related changes in the lens. In this study, we utilized data-independent acquisition mass spectrometry to analyze the urea-insoluble membrane protein fractions of 16 human lenses subdivided into three spatially distinct lens regions to characterize age-related changes, particularly concerning the lens microcirculation system and oxidative stress response. In this pilot cohort, we measured 4788 distinct protein groups, 46,681 peptides, and 7592 deamidated sequences, more than in any previous human lens data-dependent acquisition approach. Principally, we demonstrate that a significant proteome remodeling event occurs at approximately 50 years of age, resulting in metabolic preference for anaerobic glycolysis established with organelle degradation, decreased abundance of protein networks involved in calcium-dependent cell-cell contacts while retaining networks related to oxidative stress response. Furthermore, we identified multiple antioxidant transporter proteins not previously detected in the human lens and describe their spatiotemporal and age-related abundance changes. Finally, we demonstrate that aquaporin-5, among other proteins, is modified with age by post-translational modifications including deamidation and truncation. We suggest that the continued accumulation of each of these age-related outcomes in proteome remodeling contribute to decreased fiber cell permeability and result in ARNC formation.


Assuntos
Catarata , Cristalino , Humanos , Proteoma/metabolismo , Cristalino/química , Cristalino/metabolismo , Catarata/metabolismo , Antioxidantes/metabolismo
12.
Artigo em Inglês | MEDLINE | ID: mdl-38186747

RESUMO

Introduction: Age related macular degeneration (AMD) causes legal blindness worldwide, with few therapeutic targets in early disease and no treatments for 80% of cases. Extracellular deposits, including drusen and subretinal drusenoid deposits (SDD; also called reticular pseudodrusen), disrupt cone and rod photoreceptor functions and strongly confer risk for advanced disease. Due to the differential cholesterol composition of drusen and SDD, lipid transfer and cycling between photoreceptors and support cells are candidate dysregulated pathways leading to deposit formation. The current study explores this hypothesis through a comprehensive lipid compositional analysis of SDD. Methods: Histology and transmission electron microscopy were used to characterize the morphology of SDD. Highly sensitive tools of imaging mass spectrometry (IMS) and nano liquid chromatography tandem mass spectrometry (nLC-MS/MS) in positive and negative ion modes were used to spatially map and identify SDD lipids, respectively. An interpretable supervised machine learning approach was utilized to compare the lipid composition of SDD to regions of uninvolved retina across 1873 IMS features and to automatically discern candidate markers for SDD. Immunohistochemistry (IHC) was used to localize secretory phospholipase A2 group 5 (PLA2G5). Results: Among the 1873 detected features in IMS data, three lipid classes, including lysophosphatidylcholine (LysoPC), lysophosphatidylethanolamine (LysoPE) and lysophosphatidic acid (LysoPA) were observed nearly exclusively in SDD while presumed precursors, including phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) lipids were detected in SDD and adjacent photoreceptor outer segments. Molecular signals specific to SDD were found in central retina and elsewhere. IHC results indicated abundant PLA2G5 in photoreceptors and retinal pigment epithelium (RPE). Discussion: The abundance of lysolipids in SDD implicates lipid remodeling or degradation in deposit formation, consistent with ultrastructural evidence of electron dense lipid-containing structures distinct from photoreceptor outer segment disks and immunolocalization of secretory PLA2G5 in photoreceptors and RPE. Further studies are required to understand the role of lipid signals observed in and around SDD.

13.
Cells ; 11(24)2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36552806

RESUMO

Age-related protein truncation is a common process in long-lived proteins such as proteins found in the ocular lens. Major truncation products have been reported for soluble and membrane proteins of the lens, including small peptides that can accelerate protein aggregation. However, the spatial localization of age-related protein fragments in the lens has received only limited study. Imaging mass spectrometry (IMS) is an ideal tool for examining the spatial localization of protein products in tissues. In this study we used IMS to determine the spatial localization of small crystallin fragments in aged and cataractous lenses. Consistent with previous reports, the pro-aggregatory αA-crystallin 66-80 peptide as well as αA-crystallin 67-80 and γS-crystallin 167-178 were detected in normal lenses, but found to be increased in nuclear cataract regions. In addition, a series of γS-crystallin C-terminal peptides were observed to be mainly localized to cataractous regions and barely detected in transparent lenses. Other peptides, including abundant αA3-crystallin peptides were present in both normal and cataract lenses. The functional properties of these crystallin peptides remain unstudied; however, their cataract-specific localization suggests further studies are warranted.


Assuntos
Catarata , Cristalinas , Cristalino , Humanos , Idoso , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Catarata/metabolismo , Cristalino/metabolismo , Peptídeos/metabolismo , Cristalinas/metabolismo
14.
Int J Mol Sci ; 23(17)2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36077012

RESUMO

Aquaporins (AQPs) are a family of transmembrane water channels expressed in all living organisms. AQPs facilitate osmotically driven water flux across biological membranes and, in some cases, the movement of small molecules (such as glycerol, urea, CO2, NH3, H2O2). Protein-protein interactions play essential roles in protein regulation and function. This review provides a comprehensive overview of the current knowledge of the AQP interactomes and addresses the molecular basis and functional significance of these protein-protein interactions in health and diseases. Targeting AQP interactomes may offer new therapeutic avenues as targeting individual AQPs remains challenging despite intense efforts.


Assuntos
Aquaporinas , Peróxido de Hidrogênio , Animais , Aquaporinas/metabolismo , Peróxido de Hidrogênio/metabolismo , Mamíferos/metabolismo , Ureia/metabolismo , Água/metabolismo
15.
Invest Ophthalmol Vis Sci ; 63(8): 5, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816045

RESUMO

Purpose: To spatially map aquaporin-5 (AQP5) expression in the bovine lens, molecularly characterize cytoplasmic AQP5-containing vesicles in the outer cortex, and elucidate AQP5 membrane trafficking mechanisms. Methods: Immunofluorescence was performed on bovine lens cryosections using AQP5, TOMM20, COX IV, calnexin, LC3B, Sec22ß, LIMP-2, and connexin 50 antibodies and the membrane dye CM-DiI. AQP5 plasma membrane insertion was defined via line expression profile analysis. Transmission electron microscopy (TEM) was performed on bovine lens sections to examine cytoplasmic organelle morphology and subcellular localization in cortical fiber cells. Bovine lenses were treated with 10-nM bafilomycin A1 or 0.1% dimethyl sulfoxide vehicle control for 24 hours in ex vivo culture to determine changes in AQP5 plasma membrane expression. Results: Immunofluorescence analysis revealed cytoplasmic AQP5 expression in lens epithelial cells and differentiating fiber cells. In the lens cortex, complete AQP5 plasma membrane insertion occurs at r/a = 0.951 ± 0.005. AQP5-containing cytoplasmic vesicles are spheroidal in morphology with linear extensions, express TOMM20, and contain LC3B and LIMP-2, but not Sec22ß, as fiber cells mature. TEM analysis revealed complex vesicular assemblies with congruent subcellular localization to AQP5-containing cytoplasmic vesicles. AQP5-containing cytoplasmic vesicles appear to dock with the plasma membrane. Bafilomycin A1 treatment reduced AQP5 plasma membrane expression by 27%. Conclusions: AQP5 localizes to spheroidal, linear cytoplasmic vesicles in the differentiating bovine lens fiber cells. During fiber cell differentiation, these vesicles incorporate LC3B and presumably fuse with LIMP-2-positive lysosomes. Our data suggest that AQP5 to the plasma membrane through lysosome-associated unconventional protein secretion, a novel mechanism of AQP5 trafficking.


Assuntos
Aquaporina 5 , Cristalino , Animais , Aquaporina 5/metabolismo , Bovinos , Membrana Celular/metabolismo , Córtex do Cristalino/metabolismo , Cristalino/metabolismo , Transporte Proteico
16.
J Immunol ; 209(4): 796-805, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896340

RESUMO

Colonization by Helicobacter pylori is associated with gastric diseases, ranging from superficial gastritis to more severe pathologies, including intestinal metaplasia and adenocarcinoma. The interplay of the host response and the pathogen affect the outcome of disease. One major component of the mucosal response to H. pylori is the activation of a strong but inefficient immune response that fails to control the infection and frequently causes tissue damage. We have shown that polyamines can regulate H. pylori-induced inflammation. Chemical inhibition of ornithine decarboxylase (ODC), which generates the polyamine putrescine from l-ornithine, reduces gastritis in mice and adenocarcinoma incidence in gerbils infected with H. pylori However, we have also demonstrated that Odc deletion in myeloid cells enhances M1 macrophage activation and gastritis. Here we used a genetic approach to assess the specific role of gastric epithelial ODC during H. pylori infection. Specific deletion of the gene encoding for ODC in gastric epithelial cells reduces gastritis, attenuates epithelial proliferation, alters the metabolome, and downregulates the expression of immune mediators induced by H. pylori Inhibition of ODC activity or ODC knockdown in human gastric epithelial cells dampens H. pylori-induced NF-κB activation, CXCL8 mRNA expression, and IL-8 production. Chronic inflammation is a major risk factor for the progression to more severe pathologies associated with H. pylori infection, and we now show that epithelial ODC plays an important role in mediating this inflammatory response.


Assuntos
Adenocarcinoma , Gastrite , Infecções por Helicobacter , Helicobacter pylori , Adenocarcinoma/metabolismo , Animais , Células Epiteliais/metabolismo , Mucosa Gástrica/patologia , Helicobacter pylori/metabolismo , Humanos , Inflamação/metabolismo , Camundongos , Ornitina Descarboxilase/genética , Ornitina Descarboxilase/metabolismo
17.
Front Immunol ; 13: 859964, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720345

RESUMO

Although computational structure prediction has had great successes in recent years, it regularly fails to predict the interactions of large protein complexes with residue-level accuracy, or even the correct orientation of the protein partners. The performance of computational docking can be notably enhanced by incorporating experimental data from structural biology techniques. A rapid method to probe protein-protein interactions is hydrogen-deuterium exchange mass spectrometry (HDX-MS). HDX-MS has been increasingly used for epitope-mapping of antibodies (Abs) to their respective antigens (Ags) in the past few years. In this paper, we review the current state of HDX-MS in studying protein interactions, specifically Ab-Ag interactions, and how it has been used to inform computational structure prediction calculations. Particularly, we address the limitations of HDX-MS in epitope mapping and techniques and protocols applied to overcome these barriers. Furthermore, we explore computational methods that leverage HDX-MS to aid structure prediction, including the computational simulation of HDX-MS data and the combination of HDX-MS and protein docking. We point out challenges in interpreting and incorporating HDX-MS data into Ab-Ag complex docking and highlight the opportunities they provide to build towards a more optimized hybrid method, allowing for more reliable, high throughput epitope identification.


Assuntos
Medição da Troca de Deutério , Espectrometria de Massa com Troca Hidrogênio-Deutério , Complexo Antígeno-Anticorpo , Deutério , Medição da Troca de Deutério/métodos , Epitopos , Espectrometria de Massas/métodos , Proteínas/metabolismo
18.
JCI Insight ; 7(12)2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35579952

RESUMO

Macrophages play a crucial role in the inflammatory response to the human stomach pathogen Helicobacter pylori, which infects half of the world's population and causes gastric cancer. Recent studies have highlighted the importance of macrophage immunometabolism in their activation state and function. We have demonstrated that the cysteine-producing enzyme cystathionine γ-lyase (CTH) is upregulated in humans and mice with H. pylori infection. Here, we show that induction of CTH in macrophages by H. pylori promoted persistent inflammation. Cth-/- mice had reduced macrophage and T cell activation in H. pylori-infected tissues, an altered metabolome, and decreased enrichment of immune-associated gene networks, culminating in decreased H. pylori-induced gastritis. CTH is downstream of the proposed antiinflammatory molecule, S-adenosylmethionine (SAM). Whereas Cth-/- mice exhibited gastric SAM accumulation, WT mice treated with SAM did not display protection against H. pylori-induced inflammation. Instead, we demonstrated that Cth-deficient macrophages exhibited alterations in the proteome, decreased NF-κB activation, diminished expression of macrophage activation markers, and impaired oxidative phosphorylation and glycolysis. Thus, through altering cellular respiration, CTH is a key enhancer of macrophage activation, contributing to a pathogenic inflammatory response that is the universal precursor for the development of H. pylori-induced gastric disease.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Animais , Cistationina gama-Liase/genética , Cistationina gama-Liase/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos
19.
Front Physiol ; 13: 882550, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514349

RESUMO

Cataract and presbyopia are the leading cause of vision loss and impaired vision, respectively, worldwide. Changes in lens biochemistry and physiology with age are responsible for vision impairment, yet the specific molecular changes that underpin such changes are not entirely understood. In order to preserve transparency over decades of life, the lens establishes and maintains a microcirculation system (MCS) that, through spatially localized ion pumps, induces circulation of water and nutrients into (influx) and metabolites out of (outflow and efflux) the lens. Aquaporins (AQPs) are predicted to play important roles in the establishment and maintenance of local and global water flow throughout the lens. This review discusses the structure and function of lens AQPs and, importantly, their spatial localization that is likely key to proper water flow through the MCS. Moreover, age-related changes are detailed and their predicted effects on the MCS are discussed leading to an updated MCS model. Lastly, the potential therapeutic targeting of AQPs for prevention or treatment of cataract and presbyopia is discussed.

20.
J Clin Invest ; 132(10)2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35316215

RESUMO

Gastric carcinogenesis is mediated by complex interactions among Helicobacter pylori, host, and environmental factors. Here, we demonstrate that H. pylori augmented gastric injury in INS-GAS mice under iron-deficient conditions. Mechanistically, these phenotypes were not driven by alterations in the gastric microbiota; however, discovery-based and targeted metabolomics revealed that bile acids were significantly altered in H. pylori-infected mice with iron deficiency, with significant upregulation of deoxycholic acid (DCA), a carcinogenic bile acid. The severity of gastric injury was further augmented when H. pylori-infected mice were treated with DCA, and, in vitro, DCA increased translocation of the H. pylori oncoprotein CagA into host cells. Conversely, bile acid sequestration attenuated H. pylori-induced injury under conditions of iron deficiency. To translate these findings to human populations, we evaluated the association between bile acid sequestrant use and gastric cancer risk in a large human cohort. Among 416,885 individuals, a significant dose-dependent reduction in risk was associated with cumulative bile acid sequestrant use. Further, expression of the bile acid receptor transmembrane G protein-coupled bile acid receptor 5 (TGR5) paralleled the severity of carcinogenic lesions in humans. These data demonstrate that increased H. pylori-induced injury within the context of iron deficiency is tightly linked to altered bile acid metabolism, which may promote gastric carcinogenesis.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Deficiências de Ferro , Neoplasias Gástricas , Animais , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Ácidos e Sais Biliares/metabolismo , Carcinogênese/metabolismo , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/complicações , Infecções por Helicobacter/genética , Infecções por Helicobacter/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Humanos , Inflamação/patologia , Camundongos , Neoplasias Gástricas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...