Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Nat Struct Mol Biol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698207

RESUMO

Vortioxetine (VTX) is a recently approved antidepressant that targets a variety of serotonin receptors. Here, we investigate the drug's molecular mechanism of operation at the serotonin 5-HT3 receptor (5-HT3R), which features two properties: VTX acts differently on rodent and human 5-HT3R, and VTX appears to suppress any subsequent response to agonists. Using a combination of cryo-EM, electrophysiology, voltage-clamp fluorometry and molecular dynamics, we show that VTX stabilizes a resting inhibited state of the mouse 5-HT3R and an agonist-bound-like state of human 5-HT3R, in line with the functional profile of the drug. We report four human 5-HT3R structures and show that the human receptor transmembrane domain is intrinsically fragile. We also explain the lack of recovery after VTX administration via a membrane partition mechanism.

2.
Nat Commun ; 14(1): 8198, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38081813

RESUMO

Antibiotic resistance of bacteria is considered one of the most alarming developments in modern medicine. While varied pathways for bacteria acquiring antibiotic resistance have been identified, there still are open questions concerning the mechanisms underlying resistance. Here, we show that alpha phenol-soluble modulins (PSMαs), functional bacterial amyloids secreted by Staphylococcus aureus, catalyze hydrolysis of ß-lactams, a prominent class of antibiotic compounds. Specifically, we show that PSMα2 and, particularly, PSMα3 catalyze hydrolysis of the amide-like bond of the four membered ß-lactam ring of nitrocefin, an antibiotic ß-lactam surrogate. Examination of the catalytic activities of several PSMα3 variants allowed mapping of the active sites on the amyloid fibrils' surface, specifically underscoring the key roles of the cross-α fibril organization, and the combined electrostatic and nucleophilic functions of the lysine arrays. Molecular dynamics simulations further illuminate the structural features of ß-lactam association upon the fibril surface. Complementary experimental data underscore the generality of the functional amyloid-mediated catalytic phenomenon, demonstrating hydrolysis of clinically employed ß-lactams by PSMα3 fibrils, and illustrating antibiotic degradation in actual S. aureus biofilms and live bacteria environments. Overall, this study unveils functional amyloids as catalytic agents inducing degradation of ß-lactam antibiotics, underlying possible antibiotic resistance mechanisms associated with bacterial biofilms.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Antibióticos beta Lactam , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Monobactamas/metabolismo , beta-Lactamas/farmacologia , beta-Lactamas/metabolismo , Infecções Estafilocócicas/microbiologia , Bactérias
3.
Nat Commun ; 14(1): 5731, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723164

RESUMO

The amyloid aggregation of α-synuclein (αS), related to Parkinson's disease, can be catalyzed by lipid membranes. Despite the importance of lipid surfaces, the 3D-structure and orientation of lipid-bound αS is still not known in detail. Here, we report interface-specific vibrational sum-frequency generation (VSFG) experiments that reveal how monomeric αS binds to an anionic lipid interface over a large range of αS-lipid ratios. To interpret the experimental data, we present a frame-selection method ("ViscaSelect") in which out-of-equilibrium molecular dynamics simulations are used to generate structural hypotheses that are compared to experimental amide-I spectra via excitonic spectral calculations. At low and physiological αS concentrations, we derive flat-lying helical structures as previously reported. However, at elevated and potentially disease-related concentrations, a transition to interface-protruding αS structures occurs. Such an upright conformation promotes lateral interactions between αS monomers and may explain how lipid membranes catalyze the formation of αS amyloids at elevated protein concentrations.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , Amidas , Proteínas Amiloidogênicas , Lipídeos
4.
Nat Plants ; 9(6): 938-950, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37188854

RESUMO

Sucrose import from photosynthetic tissues into the phloem is mediated by transporters from the low-affinity sucrose transporter family (SUC/SUT family). Furthermore, sucrose redistribution to other tissues is driven by phloem sap movement, the product of high turgor pressure created by this import activity. Additionally, sink organs such as fruits, cereals and seeds that accumulate high concentrations of sugar also depend on this active transport of sucrose. Here we present the structure of the sucrose-proton symporter, Arabidopsis thaliana SUC1, in an outward open conformation at 2.7 Å resolution, together with molecular dynamics simulations and biochemical characterization. We identify the key acidic residue required for proton-driven sucrose uptake and describe how protonation and sucrose binding are strongly coupled. Sucrose binding is a two-step process, with initial recognition mediated by the glucosyl moiety binding directly to the key acidic residue in a stringent pH-dependent manner. Our results explain how low-affinity sucrose transport is achieved in plants, and pinpoint a range of SUC binders that help define selectivity. Our data demonstrate a new mode for proton-driven symport with links to cation-driven symport and provide a broad model for general low-affinity transport in highly enriched substrate environments.


Assuntos
Arabidopsis , Sacarose , Sacarose/metabolismo , Prótons , Proteínas de Plantas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Transporte Biológico , Arabidopsis/metabolismo
5.
Nucleic Acids Res ; 51(4): 1571-1582, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36715345

RESUMO

Noncanonical DNA structures, termed G-quadruplexes, are present in human genomic DNA and are important elements in many DNA metabolic processes. Multiple sites in the human genome have G-rich DNA stretches able to support formation of several consecutive G-quadruplexes. One of those sites is the telomeric overhang region that has multiple repeats of TTAGGG and is tightly associated with both cancer and aging. We investigated the folding of consecutive G-quadruplexes in both potassium- and sodium-containing solutions using single-molecule FRET spectroscopy, circular dichroism, thermal melting and molecular dynamics simulations. Our observations show coexistence of partially and fully folded DNA, the latter consisting of consecutive G-quadruplexes. Following the folding process over hours in sodium-containing buffers revealed fast G-quadruplex folding but slow establishment of thermodynamic equilibrium. We find that full consecutive G-quadruplex formation is inhibited by the many DNA structures randomly nucleating on the DNA, some of which are off-path conformations that need to unfold to allow full folding. Our study allows describing consecutive G-quadruplex formation in both nonequilibrium and equilibrium conditions by a unified picture, where, due to the many possible DNA conformations, full folding with consecutive G-quadruplexes as beads on a string is not necessarily achieved.


Assuntos
Quadruplex G , Humanos , DNA/química , Conformação de Ácido Nucleico , Termodinâmica , Dicroísmo Circular , Telômero , Sódio/química
6.
Int J Biol Macromol ; 227: 590-600, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36529223

RESUMO

Amyloid fibrils are protein aggregates formed by protein assembly through cross ß structures. Inhibition of amyloid fibril formation may contribute to therapy against amyloid-related disorders like Parkinson's, Alzheimer's, and type 2 diabetes. Here we report that several fluorinated sulfonamide compounds, previously shown to inhibit human carbonic anhydrase, also inhibit the fibrillation of different proteins. Using a range of spectroscopic, microscopic and chromatographic techniques, we found that the two fluorinated sulfonamide compounds completely inhibit insulin fibrillation over a period of 16 h and moderately suppress α-synuclein and Aß fibrillation. In addition, these compounds decreased cell toxicity of insulin incubated under fibrillation-inducing conditions. We ascribe these effects to their ability to maintain insulin in the native monomeric state. Molecular dynamic simulations suggest that these compounds inhibit insulin self-association by interacting with residues at the dimer interface. This highlights the general anti-aggregative properties of aromatic sulfonamides and suggests that sulfonamide compounds which inhibit carbonic anhydrase activity may have potential as therapeutic agents against amyloid-related disorders.


Assuntos
Anidrases Carbônicas , Diabetes Mellitus Tipo 2 , Humanos , Insulina/química , Amiloide/química , Sulfonamidas/farmacologia , Inibidores da Anidrase Carbônica/farmacologia
7.
Proteins ; 91(1): 47-61, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35950933

RESUMO

Independent force field validation is an essential practice to keep track of developments and for performing meaningful Molecular Dynamics simulations. In this work, atomistic force fields for intrinsically disordered proteins (IDP) are tested by simulating the archetypical IDP α-synuclein in solution for 2.5 µs. Four combinations of protein and water force fields were tested: ff19SB/OPC, ff19SB/TIP4P-D, ff03CMAP/TIP4P-D, and a99SB-disp/TIP4P-disp, with four independent repeat simulations for each combination. We compare our simulations to the results of a 73 µs simulation using the a99SB-disp/TIP4P-disp combination, provided by D. E. Shaw Research. From the trajectories, we predict a range of experimental observations of α-synuclein and compare them to literature data. This includes protein radius of gyration and hydration, intramolecular distances, NMR chemical shifts, and 3 J-couplings. Both ff19SB/TIP4P-D and a99SB-disp/TIP4P-disp produce extended conformational ensembles of α-synuclein that agree well with experimental radius of gyration and intramolecular distances while a99SB-disp/TIP4P-disp reproduces a balanced α-synuclein secondary structure content. It was found that ff19SB/OPC and ff03CMAP/TIP4P-D produce overly compact conformational ensembles and show discrepancies in the secondary structure content compared to the experimental data.


Assuntos
Proteínas Intrinsicamente Desordenadas , alfa-Sinucleína , Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Conformação Proteica
8.
J Chem Inf Model ; 62(24): 6788-6802, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-36036575

RESUMO

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) lipids have been shown to stabilize an active conformation of class A G-protein coupled receptors (GPCRs) through a conserved binding site, not present in class B GPCRs. For class B GPCRs, previous molecular dynamics (MD) simulation studies have shown PI(4,5)P2 interacting with the Glucagon receptor (GCGR), which constitutes an important target for diabetes and obesity therapeutics. In this work, we applied MD simulations supported by native mass spectrometry (nMS) to study lipid interactions with GCGR. We demonstrate how tail composition plays a role in modulating the binding of PI(4,5)P2 lipids to GCGR. Specifically, we find the PI(4,5)P2 lipids to have a higher affinity toward the inactive conformation of GCGR. Interestingly, we find that in contrast to class A GPCRs, PI(4,5)P2 appear to stabilize the inactive conformation of GCGR through a binding site conserved across class B GPCRs but absent in class A GPCRs. This suggests differences in the regulatory function of PI(4,5)P2 between class A and class B GPCRs.


Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/química , Sítios de Ligação , Conformação Molecular , Lipídeos/química
9.
ACS Chem Neurosci ; 13(8): 1129-1142, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35348335

RESUMO

G-protein coupled receptors (GPCRs) are important pharmacological targets. Despite substantial progress, important questions still remain concerning the details of activation: how can a ligand act as an agonist in one receptor but as an antagonist in a homologous receptor, and how can agonists activate a receptor despite lacking polar functional groups able to interact with helix 5 as is the case for the related adrenergic receptors? Studying vortioxetine (VXT), an important multimodal antidepressant drug, may elucidate both questions. Herein, we present a thorough in silico analysis of VXT binding to 5-HT1A, 5-HT1B, and 5-HT7 receptors and compare it with available experimental data. We are able to rationalize the differential mode of action of VXT at different receptors, but also, in the case of the 5-HT1A receptor, we observe the initial steps of activation that inform about an activation mechanism that does not involve polar interaction with helix 5. The results extend our current understanding of agonist and antagonist action at aminergic GPCRs.


Assuntos
Piperazinas , Serotonina , Antidepressivos/farmacologia , Piperazinas/farmacologia , Receptores Acoplados a Proteínas G , Serotonina/metabolismo , Vortioxetina/farmacologia
10.
Nat Plants ; 7(10): 1409-1419, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34556835

RESUMO

Sugars are essential sources of energy and carbon and also function as key signalling molecules in plants. Sugar transport proteins (STP) are proton-coupled symporters responsible for uptake of glucose from the apoplast into plant cells. They are integral to organ development in symplastically isolated tissues such as seed, pollen and fruit. Additionally, STPs play a vital role in plant responses to stressors such as dehydration and prevalent fungal infections like rust and mildew. Here we present a structure of Arabidopsis thaliana STP10 in the inward-open conformation at 2.6 Å resolution and a structure of the outward-occluded conformation at improved 1.8 Å resolution, both with glucose and protons bound. The two structures describe key states in the STP transport cycle. Together with molecular dynamics simulations that establish protonation states and biochemical analysis, they pinpoint structural elements, conserved in all STPs, that clarify the basis of proton-to-glucose coupling. These results advance our understanding of monosaccharide uptake, which is essential for plant organ development, and set the stage for bioengineering strategies in crops.


Assuntos
Arabidopsis/genética , Glucose/metabolismo , Arabidopsis/metabolismo , Transporte Biológico
11.
Biointerphases ; 16(3): 031002, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34241229

RESUMO

C99, a naturally occurring peptide, is a precursor of the amyloid ß-peptide (Aß) and plays an important role in the so-called amyloidogenic pathway of degradation of amyloid precursor protein. While the effect of C99's dimerization is not clearly determined, it has been hypothesized that the dimerization protects C99 from being cleaved further. Cholesterol (CHOL) is known to interact with C99 and its presence in high concentrations has been linked to an increase in the production of Aß; however, to what extent this is correlated, and how, has not yet been determined. In this study, we systematically examine the effect of increasing cholesterol concentration on the homodimerization propensity of C99, combining unbiased atomistic molecular dynamics simulations with biased simulations using a coarse grained resolution. Through the use of umbrella sampling, we show how the presence of high levels of CHOL destabilizes the interaction between two C99 monomers. The interaction pattern between the two C99s has shifted several residues, from the N-terminal end of the transmembrane region toward the corresponding C-terminal in the presence of CHOL. The umbrella sampling shows that the presence of high levels of CHOL led to a decrease of the disassociation energy by approximately 3 kJ/mol. In conclusion, this suggests that increasing CHOL destabilizes the interaction between the two C99 monomers, which may possibly cause an increase in the production of Aß42.


Assuntos
Precursor de Proteína beta-Amiloide/química , Colesterol/química , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/química , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Sítios de Ligação , Colesterol/metabolismo , Dimerização , Humanos , Bicamadas Lipídicas/química , Fragmentos de Peptídeos/metabolismo , Fosfatidilcolinas/química
12.
J Chem Inf Model ; 61(6): 2869-2883, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34048229

RESUMO

Nanodisc technology is increasingly being applied for structural and biophysical studies of membrane proteins. In this work, we present a general protocol for constructing molecular models of nanodiscs for molecular dynamics simulations. The protocol is written in python and based on geometric equations, making it fast and easy to modify, enabling automation and customization of nanodiscs in silico. The novelty being the ability to construct any membrane scaffold protein (MSP) variant fast and easy given only an input sequence. We validated and tested the protocol by simulating seven different nanodiscs of various sizes and with different membrane scaffold proteins, both circularized and noncircularized. The structural and biophysical properties were analyzed and shown to be in good agreement with previously reported experimental data and simulation studies.


Assuntos
Bicamadas Lipídicas , Nanoestruturas , Proteínas de Membrana , Simulação de Dinâmica Molecular
13.
Front Mol Biosci ; 8: 657946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968989

RESUMO

Islet amyloid polypeptide (IAPP) is a proposed cause of the decreased beta-cell mass in patients with type-II diabetes. The molecular composition of the cell-membrane is important for regulating IAPP cytotoxicity and aggregation. Cholesterol is present at high concentrations in the pancreatic beta-cells, and in-vitro experiments have indicated that it affects the amyloid formation of IAPP either by direct interactions or by changing the properties of the membrane. In this study we apply atomistic, unbiased molecular dynamics simulations at a microsecond timescale to investigate the effect of cholesterol on membrane bound IAPP. Simulations were performed with various combinations of cholesterol, phosphatidylcholine (PC) and phosphatidylserine (PS) lipids. In all simulations, the helical structure of monomer IAPP was stabilized by the membrane. We found that cholesterol decreased the insertion depth of IAPP compared to pure phospholipid membranes, while PS lipids counteract the effect of cholesterol. The aggregation propensity has previously been proposed to correlate with the insertion depth of IAPP, which we found to decrease with the increased ordering of the lipids induced by cholesterol. Cholesterol is depleted in the vicinity of IAPP, and thus our results suggest that the effect of cholesterol is indirect.

14.
Sci Rep ; 11(1): 4164, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33602981

RESUMO

The human dopamine transporter (hDAT) is one in three members of the monoamine transporter family (MAT). hDAT is essential for regulating the dopamine concentration in the synaptic cleft through dopamine reuptake into the presynaptic neuron; thereby controlling hDAT dopamine signaling. Dysfunction of the transporter is linked to several psychiatric disorders. hDAT and the other MATs have been shown to form oligomers in the plasma membrane, but only limited data exists on which dimeric and higher order oligomeric states are accessible and energetically favorable. In this work, we present several probable dimer conformations using computational coarse-grained self-assembly simulations and assess the relative stability of the different dimer conformations using umbrella sampling replica exchange molecular dynamics. Overall, the dimer conformations primarily involve TM9 and/or TM11 and/or TM12 at the interface. Furthermore, we show that a palmitoyl group (palm) attached to hDAT on TM12 modifies the free energy of separation for interfaces involving TM12, suggesting that S-palmitoylation may change the relative abundance of dimers involving TM12 in a biological context. Finally, a comparison of the identified interfaces of hDAT and palmitoylated hDAT to the human serotonin transporter interfaces and the leucine transporter interface, suggests similar dimer conformations across these protein family.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Transporte Biológico/fisiologia , Membrana Celular/metabolismo , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica/fisiologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo
15.
J Chem Inf Model ; 61(2): 976-986, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33502848

RESUMO

Kinetic properties and crystal structures of the Na+,K+-ATPase in complex with cardiotonic steroids (CTS) revealed significant differences between CTS subfamilies (Laursen et al.). Thus, we found beneficial effects of K+ on bufadienolide binding, which strongly contrasted with the well-known antagonism between K+ and cardenolides. In order to understand this peculiarity of bufalin interactions, we used docking and molecular dynamics simulations of the complexes involving Na+,K+-ATPase, bufadienolides (bufalin, cinobufagin), and ions (K+, Na+, Mg2+). The results revealed that bufadienolide binding is affected by (i) electrostatic attraction of the lactone ring by a cation and (ii) the ability of a cation to stabilize and "shape" the site constituted by transmembrane helices of the α-subunit (αM1-6). The latter effect was due to varying coordination patterns involving amino acid residues from helix bundles αM1-4 and αM5-10. Substituents on the steroid core of a bufadienolide add to and modify the cation effects. The above rationale is fully consistent with the ion effects on the kinetics of Na+,K+-ATPase/bufadienolide interactions.


Assuntos
Bufanolídeos , Ouabaína , Cátions , ATPase Trocadora de Sódio-Potássio/metabolismo
16.
J Phys Chem B ; 124(45): 10104-10116, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33112625

RESUMO

γ-Glutamyltransferase (GGT) is an enzyme that uses γ-glutamyl compounds as substrates and catalyzes their transfer to a water molecule or an acceptor substrate with varied physiological function in bacteria, plants, and animals. Crystal structures of GGT are known for different species and in different states of the chemical reaction; however, the structural dynamics of the substrate binding to the catalytic site of GGT are unknown. Here, we modeled Escherichia coli GGT's glutamine binding by using a swarm of accelerated molecular dynamics (aMD) simulations. Characterization of multiple binding events identified three structural binding motifs composed of polar residues in the binding pocket that govern glutamine binding into the active site. Simulated open and closed conformations of a lid-loop protecting the binding cavity suggest its role as a gating element by allowing or blocking substrates entry into the binding pocket. Partially open states of the lid-loop are accessible within thermal fluctuations, while the estimated free energy cost of a complete open state is 2.4 kcal/mol. Our results suggest that both specific electrostatic interactions and GGT conformational dynamics dictate the molecular recognition of substrate-GGT complexes.


Assuntos
Escherichia coli/enzimologia , Simulação de Dinâmica Molecular , gama-Glutamiltransferase , Domínio Catalítico , gama-Glutamiltransferase/metabolismo
17.
J Phys Chem B ; 124(36): 7819-7829, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32790367

RESUMO

Plasma membranes (PMs) contain hundreds of different lipid species that contribute differently to overall bilayer properties. By modulation of these properties, membrane protein function can be affected. Furthermore, inhomogeneous lipid mixing and domains of lipid enrichment/depletion can sort proteins and provide optimal local environments. Recent coarse-grained (CG) Martini molecular dynamics efforts have provided glimpses into lipid organization of different PMs: an "Average" and a "Brain" PM. Their high complexity and large size require long simulations (∼80 µs) for proper sampling. Thus, these simulations are computationally taxing. This level of complexity is beyond the possibilities of all-atom simulations, raising the question-what complexity is needed for "realistic" bilayer properties? We constructed CG Martini PM models of varying complexity (63 down to 8 different lipids). Lipid tail saturations and headgroup combinations were kept as consistent as possible for the "tissues'" (Average/Brain) at three levels of compositional complexity. For each system, we analyzed membrane properties to evaluate which features can be retained at lower complexity and validate eight-component bilayers that can act as reliable mimetics for Average or Brain PMs. Systems of reduced complexity deliver a more robust and malleable tool for computational membrane studies and allow for equivalent all-atom simulations and experiments.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membrana Celular , Membranas , Proteínas
18.
Elife ; 92020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32729831

RESUMO

Nanodiscs are membrane mimetics that consist of a protein belt surrounding a lipid bilayer, and are broadly used for characterization of membrane proteins. Here, we investigate the structure, dynamics and biophysical properties of two small nanodiscs, MSP1D1ΔH5 and ΔH4H5. We combine our SAXS and SANS experiments with molecular dynamics simulations and previously obtained NMR and EPR data to derive and validate a conformational ensemble that represents the structure and dynamics of the nanodisc. We find that it displays conformational heterogeneity with various elliptical shapes, and with substantial differences in lipid ordering in the centre and rim of the discs. Together, our results reconcile previous apparently conflicting observations about the shape of nanodiscs, and pave the way for future integrative studies of larger complex systems such as membrane proteins embedded in nanodiscs.


Assuntos
Espectroscopia de Ressonância Magnética , Nanoestruturas/ultraestrutura , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Difração de Raios X , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Simulação de Dinâmica Molecular
19.
ACS Chem Neurosci ; 11(9): 1231-1237, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32275382

RESUMO

The human serotonin transporter (hSERT) terminates serotonergic signaling through reuptake of neurotransmitter into presynaptic neurons and is a target for many antidepressant drugs. We describe here the development of a photoswitchable hSERT inhibitor, termed azo-escitalopram, that can be reversibly switched between trans and cis configurations using light of different wavelengths. The dark-adapted trans isomer was found to be significantly less active than the cis isomer, formed upon irradiation.


Assuntos
Citalopram , Proteínas da Membrana Plasmática de Transporte de Serotonina , Antidepressivos , Citalopram/farmacologia , Humanos , Isomerismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia
20.
Int J Biol Macromol ; 147: 98-108, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31923504

RESUMO

Protein aggregation to form amyloid is associated with many human diseases, increasing the need to develop inhibitors of this process. Here we evaluate the ability of derivatives of the small organic compound noscapine, derived from the opium poppy, to inhibit fibrillation of the model protein insulin. We combined biophysical methods to assess insulin stability and aggregation with computational docking and cell viability studies to identify the most potent derivatives. The best aggregation inhibitor (a phenyl derivative of N-nornoscapine) also demonstrated the highest ability to stabilize native insulin against thermal denaturation. This compound maintained insulin largely in the monomeric and natively folded state under fibrillation conditions and also decreased insulin aggregate toxicity against human neuroblastoma SH-SY5Y cells. The inhibitory effects were specific for insulin fibrillation, as the noscapine compounds did not inhibit fibrillation of other proteins such as α-synuclein, Aß, and FapC. Our data demonstrate that compounds which stabilize the folded native state of a protein can not only inhibit fibrillation but also decrease the toxicity of the mature fibrillar aggregates of insulin protein.


Assuntos
Amiloide/química , Insulina/química , Noscapina/farmacologia , Peptídeos beta-Amiloides/metabolismo , Benzotiazóis/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Cinética , Simulação de Acoplamento Molecular , Noscapina/síntese química , Noscapina/química , Desnaturação Proteica , Estrutura Secundária de Proteína , Temperatura , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...