Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Adv ; 3(5): 1062-1072, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38766406

RESUMO

Dye-sensitized solar cells assembled with aqueous electrolytes are emerging as a sustainable photovoltaic technology suitable for safe indoor and portable electronics use. While the scientific community is exploring unconventional materials for preparing electrodes and electrolytes, this work presents the first study on zinc oxide as a semiconductor material to fabricate photoanodes for aqueous solar cells. Different morphologies (i.e., nanoparticles, multipods, and desert roses) are synthesized, characterized, and tested in laboratory-scale prototypes. This exploratory work, also integrated by a computational study and a multivariate investigation on the factors that influence electrode sensitization, confirms the possibility of using zinc oxide in the field of aqueous photovoltaics and opens the way to new morphologies and processes of functionalization or surface activation to boost the overall cell efficiency.

2.
Dalton Trans ; 51(13): 5016-5023, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35257127

RESUMO

Using a combination of NMR, single crystal X-ray diffraction (sc-XRD) and quantum chemistry, the structure-directing role of London Dispersion (LD) is demonstrated for dibismuthane Bi2Naph2 (1). 1 shows intermolecular Bi⋯π contacts in the solid-state, while π⋯π interactions as observed in the lighter homologues are missing. Comparison of the whole series of dipnictanes revealed the influence of the pnictogen atom on the strength of London dispersion and highlights its importance in heavy main group element chemistry.

3.
Chemistry ; 27(58): 14520-14526, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34342068

RESUMO

The noncovalent interactions of heavy pnictogens with π-arenes play a fundamental role in fields like crystal engineering or catalysis. The strength of such bonds is based on an interplay between dispersion and donor/acceptor interactions, and is generally attributed to the presence of π-arenes. Computational studies of the interaction between the heavy pnictogens As, Sb and Bi and cyclohexane, in comparison with previous studies on the interaction between heavy pnictogens and benzene, show that this concept probably has to be revised. A thorough analysis of all the different energetic components that play a role in these systems, carried out with state-of-the-art computational methods, sheds light on how they influence one another and the effect that their interplay has on the overall system. Furthermore, the analysis of such interactions leads us to the unexpected finding that the presence of the pnictogen compounds strongly affects the conformational equilibrium of cyclohexane, reversing the relative stability of the chair and boat-twist conformers, and thus suggesting a possible application of tuneable dispersion energy donors to stabilise the desired conformation.


Assuntos
Benzeno , Teoria Quântica , Conformação Molecular
4.
J Comput Chem ; 41(22): 1946-1955, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32633886

RESUMO

We present a first-principles study on the structure-property relationships in MoS2 and WS2 monolayers and their vertically stacked hetero-bilayer, with and without Sulfur vacancies, in order to dissect the electronic features behind their photocatalytic water splitting capabilities. We also benchmark the accuracy of three different exchange-correlation density functionals for both minimum-energy geometries and electronic structure. The best compromise between computational cost and qualitative accuracy is achieved with the HSE06 density functional on top of Perdew-Burke-Ernzerhof minima, including dispersion with Grimme's D3 scheme. This computational approach predicts the presence of mid-gap states for defective monolayers, in accordance with the present literature. For the heterojunction, we find unexpected vacancy-position dependent electronic features: the location of the defects leads either to mid-gap trap states, detrimental for photocatalyst or to a modification of characteristic type II band alignment behavior, responsible for interlayer charge separation and low recombination rates.

5.
Front Chem ; 7: 158, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30984735

RESUMO

Here we report the first theoretical characterization of the interface between the CuGaO2 delafossite oxide and the carboxylic (-COOH) and phosphonic acid (-PO3H2) anchoring groups. The promising use of delafossites as effective alternative to nickel oxide in p-type DSSC is still limited by practical difficulties in sensitizing the delafossite surface. Thus, this work provides atomistic insights on the structure and energetics of all the possible interactions between the anchoring functional groups and the CuGaO2 surface species, including the effects of the Mg doping and of the solvent medium. Our results highlight the presence of a strong selectivity toward the monodentate binding mode on surface Ga atoms for both the carboxylic and phosphonic acid groups. Since the binding modes have a strong influence on the hole injection thermodynamics, these findings have direct implications for further development of delafossite based p-type DSSCs.

6.
Phys Chem Chem Phys ; 20(20): 14082-14089, 2018 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-29748688

RESUMO

CuMO2 delafossites (M = Al, Ga, and Cr) are p-type semiconductor oxides that have been recently proposed as the electrode in p-type dye-sensitized solar cells (p-DSSC) which is an alternative to the standard, low-performing nickel oxide. To assess this potential application of delafossites, we report here a DFT-based investigation of the structural and electronic properties of CuAlO2, CuGaO2 and CuCrO2. In particular, we address the role of Mg doping to obtain the p-type semiconducting character: the substitution of an M3+ cation with Mg2+ is easier with Ga than with Al and Cr, and, in all cases, the hole introduced by Mg2+ leads to the formation of Cu2+ species. Moreover, we address surface electronic features in order to characterize the most exposed delafossite surface termination and, more importantly, to predict the valence band maximum energy value, which determines the p-DSSC open circuit potential. From analysis of all our results, CuGaO2 emerges as the most promising system that can boost the development of new photocathodes for p-DSSCs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...