Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 77: 103903, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35220044

RESUMO

BACKGROUND: Plasma extracellular vesicles (pEV) can harbor a diverse array of factors including active proteases and the amyloid-precursor-protein (APP) cleavage product Aß, involved in plaque formation in Alzheimer`s diseases (AD). A potential role of such vesicles in AD pathology is unexplored. METHODS: In a case-control study of randomly selected patients with AD and other neurological diseases (n = 14), and healthy controls (n = 7), we systematically analyzed the content of pEV, using different assay systems. In addition, we determined their entry path into brain tissue, employing animal (mice) injection experiments with ex vivo generated EV that were similar to AD-pEV, followed by multi antigen analysis (MAA) of brain tissue (n = 4 per condition). The results were compared with an IHC staining of human brain tissue in a small cohort of AD patients (n = 3) and controls with no neurodegenerative diseases (n = 3). FINDINGS: We show that pEV levels are considerably upregulated in AD patients. Besides numerous inflammatory effectors, AD-pEV contained α-, ß- and γ-secretases, able to cleave APP in in target cells. In vitro generated EV with similar characteristics as AD-pEV accumulated in the choroid plexus (CP) of injected animals and reached primarily hippocampal neurons. Corroborating findings were made in human brain samples. An inhibitor of hyaluronic-acid-synthetase (HAS) blocked uploading of proteases and Hyaluronan onto EV in vitro and abolished CP targeting in animal injection experiments. INTERPRETATION: We conclude that protease-containing pEV could be part of a communication axis between the periphery and the brain that could be become detrimental depending on pEV concentration and duration of target cell impact. FUNDING: See the Acknowledgements section.


Assuntos
Doença de Alzheimer , Vesículas Extracelulares , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Estudos de Casos e Controles , Plexo Corióideo/metabolismo , Plexo Corióideo/patologia , Modelos Animais de Doenças , Vesículas Extracelulares/metabolismo , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos
2.
Life Sci Alliance ; 1(6): e201800093, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30519676

RESUMO

During inflammation, murine and human monocytes can develop into dendritic cells (DC), but this process is not entirely understood. Here, we demonstrate that extracellular vesicles (EV) secreted by mature human DC (maDC) differentiate peripheral monocytes into immature DC, expressing a unique marker pattern, including 6-sulfo LacNAc (slan), Zbtb46, CD64, and CD14. While EV from both maDC and immature DC differentiated monocytes similar to GM-CSF/IL-4 stimulation, only maDC-EV produced precursors, which upon maturation stimulus developed into T-cell-activating and IL-12p70-secreting maDC. Mechanistically, maDC-EV induced cell signaling through GM-CSF, which was abundant in EV as were IL-4 and other cytokines and chemokines. When injected into the mouse skin, murine maDC-EV attracted immune cells including monocytes that developed activation markers typical for inflammatory cells. Skin-injected EV also reached lymph nodes, causing a similar immune cell infiltration. We conclude that DC-derived EV likely serve to perpetuate an immune reaction and may contribute to chronic inflammation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...