Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37447407

RESUMO

The integration of platelet-shaped montmorillonite particles to improve the oxygen barrier of polyvinyl-alcohol-based barrier layers is state-of-the-art, but research on roll-to-roll coatings of such composite barrier lacquers has not been widely published. In this study, two different coating techniques, slot-die and reverse gravure, were used on a roll-to-roll scale to apply barrier lacquers comprising polyvinyl alcohol and montmorillonite. The lacquers were analyzed regarding viscosity at certain shear rates and surface energy and the dried coating layers regarding oxygen barrier, surface morphology, and particle orientation. Low permeability coefficients delivering a high oxygen barrier of 0.14 and 0.12 cm3 (STP) 1 µmm2 d bar were achieved for the coating layers with slot-die and reverse gravure coating, respectively. It turned out that the properties of the barrier lacquer need to be adjusted to the coating technique to achieve high oxygen barrier performance. By tailoring the barrier lacquer formulation, the orientation of the platelet-shaped montmorillonite particles can be achieved using both techniques. A low solid content of down to 3 wt% is preferable for the premetered slot-die coating, because it results in low agglomeration quantity in the coating layer. A high solid content of up to 9 wt% is preferable for the self-metered reverse gravure coating to assure a homogeneously coated layer.

2.
Front Nutr ; 9: 790157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340548

RESUMO

Materials with high barrier properties against oxygen are required for the packaging of many sensitive foods. Since commodity polymers lack these properties, additional barrier materials are used in plastic-based barrier packaging. These are usually more expensive than commodity polymers and, in higher fractions, also make recycling more difficult. Current developments, therefore, aim at barrier layers that are as thin as possible but retain the barrier properties. One approach is to incorporate nanoparticles into these layers. In this study, the barrier properties of nanocomposite coatings, consisting of unmodified polyvinyl alcohol (PVA), and dispersed stick-shaped halloysite (Hal) or platelet-shaped montmorillonite (MMT) silicate nanoparticles, were investigated. The PVA was dissolved in aqueous nanoparticle dispersions, which were prepared by mechanical shearing, to produce the so-called "nanolacquer." Nanolacquers with nanoparticle concentrations of 7, 30, and 47 vol% with respect to PVA were applied in a single process step with k-bar on a polypropylene substrate film. The integration of 30 vol% platelet-shaped MMT enhances the barrier performance in comparison to pure PVA by a factor of 12 and 17 for oxygen and helium, respectively. Scanning electron microscopy (SEM) shows a homogeneous distribution and a parallel alignment of the nanoparticles within the coated layer. An increase in the crystallinity of PVA was observed due to the nanoparticle integration as demonstrated by x-ray diffraction (XRD) measurements. The investigation by Fourier transform infrared (FTIR) spectroscopy and the activation energy of the permeation coefficient indicate an interaction between the nanoparticles and the PVA. The theoretically calculated values for barrier enhancement accord well with the experimental values, which emphasizes that the gas barrier improvement for oxygen and helium is mainly dominated by the tortuous path effect.

3.
ACS Nano ; 13(6): 7323-7332, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31184852

RESUMO

The ability to prepare uniform and dense networks of purely semiconducting single-walled carbon nanotubes (SWNTs) has enabled the design of various (opto-)electronic devices, especially field-effect transistors (FETs) with high carrier mobilities. Further optimization of these SWNT networks is desired to surpass established solution-processable semiconductors. The average diameter and diameter distribution of nanotubes in a dense network were found to influence the overall charge carrier mobility; e.g., networks with a broad range of SWNT diameters show inferior transport properties. Here, we investigate charge transport in FETs with nanotube networks comprising polymer-sorted small diameter (6,5) SWNTs (0.76 nm) and large diameter plasma torch SWNTs (1.17-1.55 nm) in defined mixing ratios. All transistors show balanced ambipolar transport with high on/off current ratios and negligible hysteresis. While the range of bandgaps in these networks creates a highly uneven energy landscape for charge carrier hopping, the extracted hole and electron mobilities vary nonlinearly with the network composition from the lowest mobility (15 cm2 V-1 s-1) for only (6,5) SWNT to the highest mobility (30 cm2 V-1 s-1) for only plasma torch SWNTs. A comparison to numerically simulated network mobilities shows that a superposition of thermally activated hopping across SWNT-SWNT junctions and diameter-dependent intratube transport is required to reproduce the experimental data. These results also emphasize the need for monochiral large diameter nanotubes for maximum carrier mobilities in random networks.

4.
Nano Lett ; 16(5): 3278-84, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27105249

RESUMO

We demonstrate broadband tunability of light emission from dense (6,5) single-walled carbon nanotube thin films via efficient coupling to periodic arrays of gold nanodisks that support surface lattice resonances (SLRs). We thus eliminate the need to select single-walled carbon nanotubes (SWNTs) with different chiralities to obtain narrow linewidth emission at specific near-infrared wavelengths. Emission from these hybrid films is spectrally narrow (20-40 meV) yet broadly tunable (∼1000-1500 nm) and highly directional (divergence <1.5°). In addition, SLR scattering renders the emission highly polarized, even though the SWNTs are randomly distributed. Numerical simulations are applied to correlate the increased local electric fields around the nanodisks with the observed enhancement of directional emission. The ability to control the emission properties of a single type of near-infrared emitting SWNTs over a wide range of wavelengths will enable application of carbon nanotubes in multifunctional photonic devices.

5.
ACS Appl Mater Interfaces ; 8(8): 5571-9, 2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26867006

RESUMO

The ability to select and enrich semiconducting single-walled carbon nanotubes (SWNT) with high purity has led to a fast rise of solution-processed nanotube network field-effect transistors (FETs) with high carrier mobilities and on/off current ratios. However, it remains an open question whether it is best to use a network of only one nanotube species (monochiral) or whether a mix of purely semiconducting nanotubes but with different bandgaps is sufficient for high performance FETs. For a range of different polymer-sorted semiconducting SWNT networks, we demonstrate that a very small amount of narrow bandgap nanotubes within a dense network of large bandgap nanotubes can dominate the transport and thus severely limit on-currents and effective carrier mobility. Using gate-voltage-dependent electroluminescence, we spatially and spectrally reveal preferential charge transport that does not depend on nominal network density but on the energy level distribution within the network and carrier density. On the basis of these results, we outline rational guidelines for the use of mixed SWNT networks to obtain high performance FETs while reducing the cost for purification.

6.
Adv Mater ; 28(20): 3952-9, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26437002

RESUMO

An alternative doping approach that exploits the use of organic donor/acceptor molecules for the effective tuning of the free electron concentration in quasi-2D ZnO transistor channel layers is reported. The method relies on the deposition of molecular dopants/formulations directly onto the ultrathin ZnO channels. Through careful choice of materials combinations, electron transfer from the dopant molecule to ZnO and vice versa is demonstrated.

7.
ACS Appl Mater Interfaces ; 7(1): 682-9, 2015 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-25493421

RESUMO

Efficient selection of semiconducting single-walled carbon nanotubes (SWNTs) from as-grown nanotube samples is crucial for their application as printable and flexible semiconductors in field-effect transistors (FETs). In this study, we use atactic poly(9-dodecyl-9-methyl-fluorene) (a-PF-1-12), a polyfluorene derivative with asymmetric side-chains, for the selective dispersion of semiconducting SWNTs with large diameters (>1 nm) from plasma torch-grown SWNTs. Lowering the molecular weight of the dispersing polymer leads to a significant improvement of selectivity. Combining dense semiconducting SWNT networks deposited from an enriched SWNT dispersion with a polymer/metal-oxide hybrid dielectric enables transistors with balanced ambipolar, contact resistance-corrected mobilities of up to 50 cm(2)·V(-1)·s(-1), low ohmic contact resistance, steep subthreshold swings (0.12-0.14 V/dec) and high on/off ratios (10(6)) even for short channel lengths (<10 µm). These FETs operate at low voltages (<3 V) and show almost no current hysteresis. The resulting ambipolar complementary-like inverters exhibit gains up to 61.

8.
Adv Mater ; 26(47): 7986-92, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25338783

RESUMO

In situ confocal Raman microscopy is used to map the recombination zone (induced p-n junction) in an ambipolar carbon-nanotube-network transistor with high spatial resolution. The shift of the 2D mode (G' mode) depending on hole and electron accumulation serves as a measure for the local charge-carrier density and provides complementary information about charge transport and recombination in ambipolar transistors.

9.
ACS Macro Lett ; 1(7): 815-819, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35607124

RESUMO

The selective dispersion of single-walled carbon nanotube species (n,m) with conjugated polymers such as poly(9,9-dioctylfluorene) (PFO) and poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) in organic solvents depends not only on the type of solvent but also on the molecular weight of the polymer. We find an increasing amount of nanotubes and altered selectivities for dispersions with higher molecular weight polymers. Including the effects of different aromatic solvents, we propose that solution viscosity is one of the factors influencing the apparent selectivity by changing the reaggregation rate of the single-walled carbon nanotubes (SWNT). The type of solvent, polymer molecular weight, concentration, and viscosity should thus be taken into account when screening for new polymers for selective SWNT dispersion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA