Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 161
Filtrar
1.
JAMA Netw Open ; 7(8): e2426141, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39106064

RESUMO

Importance: The chronic neuronal burden of traumatic brain injury (TBI) is not fully characterized by routine imaging, limiting understanding of the role of neuronal substrates in adverse outcomes. Objective: To determine whether tissues that appear healthy on routine imaging can be investigated for selective neuronal loss using [11C]flumazenil (FMZ) positron emission tomography (PET) and to examine whether this neuronal loss is associated with long-term outcomes. Design, Setting, and Participants: In this cross-sectional study, data were collected prospectively from 2 centers (University of Cambridge in the UK and Weill Cornell Medicine in the US) between September 1, 2004, and May 31, 2021. Patients with TBI (>6 months postinjury) were compared with healthy control participants (all aged >18 years). Individuals with neurological disease, benzodiazepine use, or contraindication to magnetic resonance imaging were excluded. Data were retrospectively collated with nonconsecutive recruitment, owing to convenience and scanner or PET ligand availability. Data were analyzed between February 1 and September 30, 2023. Exposure: Flumazenil voxelwise binding potential relative to nondisplaceable binding potential (BPND). Main Outcomes and Measures: Selective neuronal loss identified with FMZ PET was compared between groups on voxelwise and regional scales, and its association with functional, cognitive, and psychological outcomes was examined using Glasgow Outcome Scale (GOS) scores, measures of sustained executive attention (animal and sustained fluency), and 36-Item Short Form Health Survey (SF-36) scores. Diffusion tensor imaging was used to assess structural connectivity of regions of cortical damage, and its association with thalamic selective neuronal loss. Results: In this study, 24 patients with chronic TBI (mean [SD] age, 39.2 [12.3] years; 18 men [75.0%]) and 33 healthy control participants (mean [SD] age, 47.6 [20.5] years; 23 men [69.7%]) underwent FMZ PET. Patients with TBI had a median time of 29 (range, 7-95) months from injury to scan. They displayed selective neuronal loss in thalamic nuclei, over and above gross volume loss in the left thalamus, and bilateral central, mediodorsal, ventral-lateral dorsal, anterior, and ventral anterior thalamic nuclei, across a wide range of injury severities. Neuronal loss was associated with worse functional outcome using GOS scores (left thalamus, left ventral anterior, and bilateral central, mediodorsal, and anterior nuclei), worse cognitive outcome on measures of sustained executive attention (left thalamus, bilateral central, and right mediodorsal nuclei), and worse emotional outcome using SF-36 scores (right central thalamic nucleus). Chronic thalamic neuronal loss partially mirrored the location of primary cortical contusions, which may indicate secondary injury mechanisms of transneuronal degeneration. Conclusions and Relevance: The findings of this study suggest that selective thalamic vulnerability may have chronic neuronal consequences with relevance to long-term outcome, suggesting the evolving and potentially lifelong thalamic neuronal consequences of TBI. FMZ PET is a more sensitive marker of the burden of neuronal injury than routine imaging; therefore, it could inform outcome prognostication and may lead to the development of individualized precision medicine approaches.


Assuntos
Lesões Encefálicas Traumáticas , Tomografia por Emissão de Pósitrons , Tálamo , Humanos , Masculino , Feminino , Adulto , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Lesões Encefálicas Traumáticas/complicações , Estudos Transversais , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Tálamo/diagnóstico por imagem , Tálamo/patologia , Flumazenil/análogos & derivados , Neurônios/patologia
2.
N Engl J Med ; 391(7): 598-608, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39141852

RESUMO

BACKGROUND: Patients with brain injury who are unresponsive to commands may perform cognitive tasks that are detected on functional magnetic resonance imaging (fMRI) and electroencephalography (EEG). This phenomenon, known as cognitive motor dissociation, has not been systematically studied in a large cohort of persons with disorders of consciousness. METHODS: In this prospective cohort study conducted at six international centers, we collected clinical, behavioral, and task-based fMRI and EEG data from a convenience sample of 353 adults with disorders of consciousness. We assessed the response to commands on task-based fMRI or EEG in participants without an observable response to verbal commands (i.e., those with a behavioral diagnosis of coma, vegetative state, or minimally conscious state-minus) and in participants with an observable response to verbal commands. The presence or absence of an observable response to commands was assessed with the use of the Coma Recovery Scale-Revised (CRS-R). RESULTS: Data from fMRI only or EEG only were available for 65% of the participants, and data from both fMRI and EEG were available for 35%. The median age of the participants was 37.9 years, the median time between brain injury and assessment with the CRS-R was 7.9 months (25% of the participants were assessed with the CRS-R within 28 days after injury), and brain trauma was an etiologic factor in 50%. We detected cognitive motor dissociation in 60 of the 241 participants (25%) without an observable response to commands, of whom 11 had been assessed with the use of fMRI only, 13 with the use of EEG only, and 36 with the use of both techniques. Cognitive motor dissociation was associated with younger age, longer time since injury, and brain trauma as an etiologic factor. In contrast, responses on task-based fMRI or EEG occurred in 43 of 112 participants (38%) with an observable response to verbal commands. CONCLUSIONS: Approximately one in four participants without an observable response to commands performed a cognitive task on fMRI or EEG as compared with one in three participants with an observable response to commands. (Funded by the James S. McDonnell Foundation and others.).


Assuntos
Lesões Encefálicas , Transtornos da Consciência , Transtornos Dissociativos , Estado Vegetativo Persistente , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Lesões Encefálicas/fisiopatologia , Lesões Encefálicas/complicações , Lesões Encefálicas/diagnóstico por imagem , Cognição/fisiologia , Transtornos da Consciência/diagnóstico por imagem , Transtornos da Consciência/etiologia , Transtornos da Consciência/fisiopatologia , Eletroencefalografia , Imageamento por Ressonância Magnética , Estado Vegetativo Persistente/diagnóstico por imagem , Estado Vegetativo Persistente/etiologia , Estado Vegetativo Persistente/fisiopatologia , Estudos Prospectivos , Transtornos Dissociativos/diagnóstico por imagem , Transtornos Dissociativos/etiologia , Transtornos Dissociativos/fisiopatologia
3.
Neuron ; 112(10): 1595-1610, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754372

RESUMO

Recovery of consciousness after coma remains one of the most challenging areas for accurate diagnosis and effective therapeutic engagement in the clinical neurosciences. Recovery depends on preservation of neuronal integrity and evolving changes in network function that re-establish environmental responsiveness. It typically occurs in defined steps: it begins with eye opening and unresponsiveness in a vegetative state, then limited recovery of responsiveness characterizes the minimally conscious state, and this is followed by recovery of reliable communication. This review considers several points for novel interventions, for example, in persons with cognitive motor dissociation in whom a hidden cognitive reserve is revealed. Circuit mechanisms underlying restoration of behavioral responsiveness and communication are discussed. An emerging theme is the possibility to rescue latent capacities in partially damaged human networks across time. These opportunities should be exploited for therapeutic engagement to achieve individualized solutions for restoration of communication and environmental interaction across varying levels of recovery.


Assuntos
Coma , Recuperação de Função Fisiológica , Humanos , Coma/fisiopatologia , Coma/terapia , Recuperação de Função Fisiológica/fisiologia , Estado de Consciência/fisiologia , Estado Vegetativo Persistente/fisiopatologia , Estado Vegetativo Persistente/reabilitação
4.
Brain ; 147(4): 1321-1330, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38412555

RESUMO

The pathophysiological underpinnings of critically disrupted brain connectomes resulting in coma are poorly understood. Inflammation is potentially an important but still undervalued factor. Here, we present a first-in-human prospective study using the 18-kDa translocator protein (TSPO) radioligand 18F-DPA714 for PET imaging to allow in vivo neuroimmune activation quantification in patients with coma (n = 17) following either anoxia or traumatic brain injuries in comparison with age- and sex-matched controls. Our findings yielded novel evidence of an early inflammatory component predominantly located within key cortical and subcortical brain structures that are putatively implicated in consciousness emergence and maintenance after severe brain injury (i.e. mesocircuit and frontoparietal networks). We observed that traumatic and anoxic patients with coma have distinct neuroimmune activation profiles, both in terms of intensity and spatial distribution. Finally, we demonstrated that both the total amount and specific distribution of PET-measurable neuroinflammation within the brain mesocircuit were associated with the patient's recovery potential. We suggest that our results can be developed for use both as a new neuroprognostication tool and as a promising biometric to guide future clinical trials targeting glial activity very early after severe brain injury.


Assuntos
Lesões Encefálicas , Coma Pós-Traumatismo da Cabeça , Humanos , Coma/complicações , Coma Pós-Traumatismo da Cabeça/complicações , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Encéfalo/metabolismo , Lesões Encefálicas/complicações , Hipóxia/complicações , Receptores de GABA/metabolismo
5.
Neurocrit Care ; 41(1): 129-145, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38286946

RESUMO

BACKGROUND: We developed a gap analysis that examines the role of brain-computer interfaces (BCI) in patients with disorders of consciousness (DoC), focusing on their assessment, establishment of communication, and engagement with their environment. METHODS: The Curing Coma Campaign convened a Coma Science work group that included 16 clinicians and neuroscientists with expertise in DoC. The work group met online biweekly and performed a gap analysis of the primary question. RESULTS: We outline a roadmap for assessing BCI readiness in patients with DoC and for advancing the use of BCI devices in patients with DoC. Additionally, we discuss preliminary studies that inform development of BCI solutions for communication and assessment of readiness for use of BCIs in DoC study participants. Special emphasis is placed on the challenges posed by the complex pathophysiologies caused by heterogeneous brain injuries and their impact on neuronal signaling. The differences between one-way and two-way communication are specifically considered. Possible implanted and noninvasive BCI solutions for acute and chronic DoC in adult and pediatric populations are also addressed. CONCLUSIONS: We identify clinical and technical gaps hindering the use of BCI in patients with DoC in each of these contexts and provide a roadmap for research aimed at improving communication for adults and children with DoC, spanning the clinical spectrum from intensive care unit to chronic care.


Assuntos
Interfaces Cérebro-Computador , Transtornos da Consciência , Humanos , Transtornos da Consciência/fisiopatologia , Transtornos da Consciência/terapia , Comunicação
6.
J Clin Neurophysiol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38194637

RESUMO

PURPOSE: To investigate the effects of ketamine on patients with refractory status epilepticus after cardiac arrest. METHODS: In this retrospective cohort, selected EEG segments from patients after cardiac arrest were classified into different EEG patterns (based on background continuity and burden of epileptiform discharges) and spectral profiles (based on the presence of frequency components). For patients who received ketamine, EEG data were compared before, during, and after ketamine infusion; for the no-ketamine group, EEG data were compared at three separated time points during recording. Ketamine usage was determined by clinical providers. Electrographic improvement in epileptiform activity was scored, and the odds ratio was calculated using the Fisher exact test. Functional outcome measures at time of discharge were also examined. RESULTS: Of a total of 38 patients with postcardiac arrest refractory status epilepticus, 13 received ketamine and 25 did not. All patients were on ≥2 antiseizure medications including at least one sedative infusion (midazolam). For the ketamine group, eight patients had electrographic improvement, compared with only two patients in the no-ketamine group, with an odds ratio of 7.19 (95% confidence interval 1.16-44.65, P value of 0.0341) for ketamine versus no ketamine. Most of the patients who received ketamine had myoclonic status epilepticus, and overall neurologic outcomes were poor with no patients having a favorable outcome. CONCLUSIONS: For postarrest refractory status epilepticus, ketamine use was associated with electrographic improvement, but with the available data, it is unclear whether ketamine use or EEG improvement can be linked to better functional recovery.

7.
Nat Med ; 29(12): 3162-3174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049620

RESUMO

Converging evidence indicates that impairments in executive function and information-processing speed limit quality of life and social reentry after moderate-to-severe traumatic brain injury (msTBI). These deficits reflect dysfunction of frontostriatal networks for which the central lateral (CL) nucleus of the thalamus is a critical node. The primary objective of this feasibility study was to test the safety and efficacy of deep brain stimulation within the CL and the associated medial dorsal tegmental (CL/DTTm) tract.Six participants with msTBI, who were between 3 and 18 years post-injury, underwent surgery with electrode placement guided by imaging and subject-specific biophysical modeling to predict activation of the CL/DTTm tract. The primary efficacy measure was improvement in executive control indexed by processing speed on part B of the trail-making test.All six participants were safely implanted. Five participants completed the study and one was withdrawn for protocol non-compliance. Processing speed on part B of the trail-making test improved 15% to 52% from baseline, exceeding the 10% benchmark for improvement in all five cases.CL/DTTm deep brain stimulation can be safely applied and may improve executive control in patients with msTBI who are in the chronic phase of recovery.ClinicalTrials.gov identifier: NCT02881151 .


Assuntos
Lesões Encefálicas Traumáticas , Estimulação Encefálica Profunda , Humanos , Lesões Encefálicas Traumáticas/terapia , Estimulação Encefálica Profunda/métodos , Estudos de Viabilidade , Qualidade de Vida , Tálamo/fisiologia
8.
Camb Q Healthc Ethics ; : 1-24, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37850455

RESUMO

This is the second paper in a two-part series describing subject and family perspectives from the CENTURY-S (CENtral Thalamic Deep Brain Stimulation for the Treatment of Traumatic Brain InjURY-Safety) first-in-human invasive neurological device trial to achieve cognitive restoration in moderate to severe traumatic brain injury (msTBI). To participate, subjects were independently assessed to formally establish decision-making capacity to provide voluntary informed consent. Here, we report on post-operative interviews conducted after a successful trial of thalamic stimulation. All five msTBI subjects met a pre-selected primary endpoint of at least a 10% improvement in completion time on Trail-Making-Test Part B, a marker of executive function. We describe narrative responses of subjects and family members, refracted against that success. Interviews following surgery and the stimulation trial revealed the challenge of adaptation to improvements in cognitive function and emotional regulation as well as altered (and restored) relationships and family dynamics. These improvements exposed barriers to social reintegration made relevant by recoveries once thought inconceivable. The study's success sparked concerns about post-trial access to implanted devices, financing of device maintenance, battery replacement, and on-going care. Most subjects and families identified the need for supportive counseling to adapt to the new trajectory of their lives.

9.
Neurotrauma Rep ; 4(1): 318-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771426

RESUMO

Cognitive impairment after traumatic brain injury (TBI) is persistent and disabling. Assessing cognitive function in a reliable and valid manner, using measures that are sensitive to the integrity of underlying neural substrates, is crucial in clinical research. The Attention Network Test (ANT) is one such assessment measure that has demonstrated associations with neural regions involved in attention; however, clinical utility of the ANT is limited because its relationship with neuropsychological measures of cognitive function (i.e., its construct validity) has not yet been established in TBI. We evaluated the association between the ANT and 1) a neuropsychological battery assessing executive function and memory and 2) global function assessed by the Glasgow Outcome Scale-Extended (GOSE). Forty-eight adults with complicated mild-severe TBI were evaluated ∼5 months post-injury. Using principal component analysis and multi-variate linear regression adjusted for age, gender, education, and cause of injury, we found that ANT reaction time and executive network scores predicted a principal component assessing processing speed and executive function. Conversely, the ANT did not predict a principal component assessing memory. The ANT was weakly associated with the GOSE. Among persons with TBI during the post-acute phase of recovery, the ANT has good construct validity as evidenced by its associations with neuropsychological measures of processing speed and executive function, but not memory. Given that ANT networks are known to relate to specific neuroanatomical regions, the ANT may be a useful outcome measure for evaluating novel therapeutics targeting attention and executive functions after TBI.

10.
Cell Rep ; 42(8): 112854, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498745

RESUMO

We assess cerebral integrity with cortical and subcortical FDG-PET and cortical electroencephalography (EEG) within the mesocircuit model framework in patients with disorders of consciousness (DoCs). The mesocircuit hypothesis proposes that subcortical activation facilitates cortical function. We find that the metabolic balance of subcortical mesocircuit areas is informative for diagnosis and is associated with four EEG-based power spectral density patterns, cortical metabolism, and α power in healthy controls and patients with a DoC. Last, regional electrometabolic coupling at the cortical level can be identified in the θ and α ranges, showing positive and negative relations with glucose uptake, respectively. This relation is inverted in patients with a DoC, potentially related to altered orchestration of neural activity, and may underlie suboptimal excitability states in patients with a DoC. By understanding the neurobiological basis of the pathophysiology underlying DoCs, we foresee translational value for diagnosis and treatment of patients with a DoC.


Assuntos
Estado de Consciência , Tomografia por Emissão de Pósitrons , Humanos , Eletroencefalografia , Transtornos da Consciência/metabolismo , Encéfalo/metabolismo
11.
Commun Biol ; 6(1): 692, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-37407655

RESUMO

Integrated Information Theory was developed to explain and quantify consciousness, arguing that conscious systems consist of elements that are integrated through their causal properties. This study presents an implementation of Integrated Information Theory 3.0, the latest version of this framework, to functional MRI data. Data were acquired from 17 healthy subjects who underwent sedation with propofol, a short-acting anaesthetic. Using the PyPhi software package, we systematically analyze how Φmax, a measure of integrated information, is modulated by the sedative in different resting-state networks. We compare Φmax to other proposed measures of conscious level, including the previous version of integrated information, Granger causality, and correlation-based functional connectivity. Our results indicate that Φmax presents a variety of sedative-induced behaviours for different networks. Notably, changes to Φmax closely reflect changes to subjects' conscious level in the frontoparietal and dorsal attention networks, which are responsible for higher-order cognitive functions. In conclusion, our findings present important insight into different measures of conscious level that will be useful in future implementations to functional MRI and other forms of neuroimaging.


Assuntos
Imageamento por Ressonância Magnética , Propofol , Humanos , Imageamento por Ressonância Magnética/métodos , Teoria da Informação , Estado de Consciência , Hipnóticos e Sedativos
12.
Neuroimage ; 274: 120126, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37191655

RESUMO

Executive attention impairments are a persistent and debilitating consequence of traumatic brain injury (TBI). To make headway towards treating and predicting outcomes following heterogeneous TBI, cognitive impairment specific pathophysiology first needs to be characterized. In a prospective observational study, we measured EEG during the attention network test aimed at detecting alerting, orienting, executive attention and processing speed. The sample (N = 110) of subjects aged 18-86 included those with and without traumatic brain injury: n = 27, complicated mild TBI; n = 5, moderate TBI; n = 10, severe TBI; n = 63, non-brain-injured controls. Subjects with TBI had impairments in processing speed and executive attention. Electrophysiological markers of executive attention processing in the midline frontal regions reveal that, as a group, those with TBI and elderly non-brain-injured controls have reduced responses. We also note that those with TBI and elderly controls have responses that are similar for both low and high-demand trials. In subjects with moderate-severe TBI, reductions in frontal cortical activation and performance profiles are both similar to that of controls who are ∼4 to 7 years older. Our specific observations of frontal response reductions in subjects with TBI and in older adults is consistent with the suggested role of the anterior forebrain mesocircuit as underlying cognitive impairments. Our results provide novel correlative data linking specific pathophysiological mechanisms underlying domain-specific cognitive deficits following TBI and with normal aging. Collectively, our findings provide biomarkers that may serve to track therapeutic interventions and guide development of targeted therapeutics following brain injuries.


Assuntos
Lesões Encefálicas Traumáticas , Função Executiva , Envelhecimento Saudável , Idoso , Humanos , Envelhecimento , Biomarcadores , Lesões Encefálicas , Função Executiva/fisiologia , Testes Neuropsicológicos
13.
Int IEEE EMBS Conf Neural Eng ; 2023: 10123754, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37228786

RESUMO

Application of closed-loop approaches in systems neuroscience and brain-computer interfaces holds great promise for revolutionizing our understanding of the brain and for developing novel neuromodulation strategies to restore lost function. The anterior forebrain mesocircuit (AFM) of the mammalian brain is hypothesized to underlie arousal regulation of the cortex and striatum, and support cognitive functions during wakefulness. Dysfunction of arousal regulation is hypothesized to contribute to cognitive dysfunctions in various neurological disorders, and most prominently in patients following traumatic brain injury (TBI). Several clinical studies have explored the use of daily central thalamic deep brain stimulation (CT-DBS) within the AFM to restore consciousness and executive attention in TBI patients. In this study, we explored the use of closed-loop CT-DBS in order to episodically regulate arousal of the AFM of a healthy non-human primate (NHP) with the goal of restoring behavioral performance. We used pupillometry and near real-time analysis of ECoG signals to episodically initiate closed-loop CT-DBS and here we report on our ability to enhance arousal and restore the animal's performance. The initial computer based approach was then experimentally validated using a customized clinical-grade DBS device, the DyNeuMo-X, a bi-directional research platform used for rapidly testing closed-loop DBS. The successful implementation of the DyNeuMo-X in a healthy NHP supports ongoing clinical trials employing the internal DyNeuMo system (NCT05437393, NCT05197816) and our goal of developing and accelerating the deployment of novel neuromodulation approaches to treat cognitive dysfunction in patients with structural brain injuries and other etiologies.

14.
Brain Commun ; 5(2): fcad094, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056480

RESUMO

Assessing cognitive function-especially language processing-in severely brain-injured patients is critical for prognostication, care, and development of communication devices (e.g. brain-computer interfaces). In patients with diminished motor function, language processing has been probed using EEG measures of command-following in motor imagery tasks. While such tests eliminate the need for motor response, they require sustained attention. However, passive listening tasks, with an EEG response measure can reduce both motor and attentional demands. These considerations motivated the development of two assays of low-level language processing-identification of differential phoneme-class responses and tracking of the natural speech envelope. This cross-sectional study looks at a cohort of 26 severely brain-injured patient subjects and 10 healthy controls. Patients' level of function was assessed via the coma recovery scale-revised at the bedside. Patients were also tested for command-following via EEG and/or MRI assays of motor imagery. For the present investigation, EEG was recorded while presenting a 148 s audio clip of Alice in Wonderland. Time-locked EEG responses to phoneme classes were extracted and compared to determine a differential phoneme-class response. Tracking of the natural speech envelope was assessed from the same recordings by cross-correlating the EEG response with the speech envelope. In healthy controls, the dynamics of the two measures were temporally similar but spatially different: a central parieto-occipital component of differential phoneme-class response was absent in the natural speech envelope response. The differential phoneme-class response was present in all patient subjects, including the six classified as vegetative state/unresponsive wakefulness syndrome by behavioural assessment. However, patient subjects with evidence of language processing either by behavioural assessment or motor imagery tests had an early bilateral response in the first 50 ms that was lacking in patient subjects without any evidence of language processing. The natural speech envelope tracking response was also present in all patient subjects and responses in the first 100 ms distinguished patient subjects with evidence of language processing. Specifically, patient subjects with evidence of language processing had a more global response in the first 100 ms whereas those without evidence of language processing had a frontopolar response in that period. In summary, we developed two passive EEG-based methods to probe low-level language processing in severely brain-injured patients. In our cohort, both assays showed a difference between patient subjects with evidence of command-following and those with no evidence of command-following: a more prominent early bilateral response component.

15.
Neurology ; 100(24): 1144-1150, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-36854621

RESUMO

Brain-injured patients in a state of cognitive motor dissociation (CMD) exhibit a lack of command following using conventional neurobehavioral examination tools but a high level of awareness and language processing when assessed using advanced imaging and electrophysiology techniques. Because of their behavioral unresponsiveness, patients with CMD may seem clinically indistinguishable from those with a true disorder of consciousness that affects awareness on a substantial level (coma, vegetative state/unresponsive wakefulness state, or minimally conscious state minus). Yet, by expanding the range of motor testing across limb, facial, and ocular motricity, we may detect subtle, purposeful movements even in the subset of patients classified as vegetative state/unresponsive wakefulness state. We propose the term of clinical CMD to describe patients showing these slight but determined motor responses and exhibiting a characteristic akinetic motor behavior as opposed to a pyramidal motor system behavior. These patients may harbor hidden cognitive capabilities and significant potential for a good long-term outcome. Indeed, we envision CMD as ranging from complete (no motor response) to partial (subtle clinical motor response) forms, falling within a spectrum of progressively better motor output in patients with considerable cognitive capabilities. In addition to providing a decisional flowchart, we present this novel approach to classification as a graphical model that illustrates the range of clinical manifestations and recovery trajectories fundamentally differentiating true disorders of consciousness from the spectrum of CMD.


Assuntos
Encéfalo , Estado Vegetativo Persistente , Humanos , Estado de Consciência/fisiologia , Coma/complicações , Vigília , Transtornos da Consciência/diagnóstico , Conscientização
16.
J Neurol ; 270(3): 1811-1812, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36216890
17.
Presse Med ; 52(2): 104161, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36563999

RESUMO

The 'mesocircuit hypothesis' proposes mechanisms underlying the recovery of consciousness following severe brain injuries. The model builds up from a single premise that multifocal brain injuries resulting in coma and subsequent disorders of consciousness produce widespread neuronal death and dysfunction. Considering the general properties of cortical, thalamic, and striatal neurons, a lawful and specific circuit-level mechanism is constructed based on these known anatomical and physiological specializations of neuronal subtypes. The mesocircuit model generates many testable predictions at the mesocircuit, local circuit, and cellular level across multiple cerebral structures to correlate diagnostic measurements and interpret therapeutic interventions. The anterior forebrain mesocircuit is integrally related to the frontal-parietal network, another network demonstrated to show strong correlation with levels of recovery in disorders of consciousness. A further extension known as the "ABCD" model has been used to examine interaction of these models in recovery of consciousness using electrophysiological data types. Many studies have examined predictions of the mesocircuit model; here we first present the model and review the accumulated evidence for several predictions of model across multiple stages of recovery function in human subjects. Recent studies linking the mesocircuit model, the ABCD model, and interactions with the frontoparietal network are reviewed. Finally, theoretical implications of the mesocircuit model at the neuronal level are considered to interpret recent studies of deep brain stimulation in the central lateral thalamus in patients recovering from coma and in new experimental models in the context of emerging understanding of neuronal and local circuit mechanisms underlying conscious brain states.

18.
Proc Natl Acad Sci U S A ; 119(46): e2120221119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343241

RESUMO

The COVID-19 pandemic has created a large population of patients who are slow to recover consciousness following mechanical ventilation and sedation in the intensive care unit. Few clinical scenarios are comparable. Possible exceptions are the rare patients in post-cardiac arrest coma with minimal to no structural brain injuries who recovered cognitive and motor functions after prolonged delays. A common electroencephalogram (EEG) signature seen in these patients is burst suppression [8]. Biophysical modeling has shown that burst suppression is likely a signature of a neurometabolic state that preserves basic cellular function "during states of lowered energy availability." These states likely act as a brain protective mechanism [9]. Similar EEG patterns are observed in the anoxia resistant painted turtle [24]. We present a conceptual analysis to interpret the brain state of COVID-19 patients suffering prolonged recovery of consciousness. We begin with the Ching model and integrate findings from other clinical scenarios and studies of the anoxia-tolerant physiology of the painted turtle. We postulate that prolonged recovery of consciousness in COVID-19 patients could reflect the effects of modest hypoxic injury to neurons and the unmasking of latent neuroprotective mechanisms in the human brain. This putative protective down-regulated state appears similar to that observed in the painted turtle and suggests new approaches to enhancing coma recovery [12].


Assuntos
COVID-19 , Coma , Humanos , Pandemias , Eletroencefalografia , Encéfalo , Hipóxia
19.
Front Neurol ; 13: 1040975, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388181

RESUMO

Multiple studies have shown that blast injury is followed by sleep disruption linked to functional sequelae. It is well established that improving sleep ameliorates such functional deficits. However, little is known about longitudinal brain activity changes after blast injury. In addition, the effects of directly modulating the sleep/wake cycle on learning task performance after blast injury remain unclear. We hypothesized that modulation of the sleep phase cycle in our injured mice would improve post-injury task performance. Here, we have demonstrated that excessive sleep electroencephalographic (EEG) patterns are accompanied by prominent motor and cognitive impairment during acute stage after secondary blast injury (SBI) in a mouse model. Over time we observed a transition to more moderate and prolonged sleep/wake cycle disturbances, including changes in theta and alpha power. However, persistent disruptions of the non-rapid eye movement (NREM) spindle amplitude and intra-spindle frequency were associated with lasting motor and cognitive deficits. We, therefore, modulated the sleep phase of injured mice using subcutaneous (SC) dexmedetomidine (Dex), a common, clinically used sedative. Dex acutely improved intra-spindle frequency, theta and alpha power, and motor task execution in chronically injured mice. Moreover, dexmedetomidine ameliorated cognitive deficits a week after injection. Our results suggest that SC Dex might potentially improve impaired motor and cognitive behavior during daily tasks in patients that are chronically impaired by blast-induced injuries.

20.
Neurol Clin Pract ; 12(5): 352-364, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36380885

RESUMO

Background and Objectives: Following brain injury, clinical assessments of residual and emerging cognitive function are difficult and fraught with errors. In adults, recent American Academy of Neurology (AAN) practice guidelines recommend objective neuroimaging and neurophysiologic measures to support diagnosis. Equivalent measures are lacking in pediatrics-an especially great challenge due to the combined heterogeneity of both brain injury and pediatric development. Therefore, we aim to establish quantitative, clinically practicable measures of cognitive function following pediatric brain injury. Methods: Participants with and without brain injury were aged 8-18 years, clinically classified according to cognitive recovery state: N = 8 in disorders of consciousness (DoC), N = 7 in confusional state, N = 19 cognitively impaired, and N = 13 typically developing uninjured controls. We prospectively measured electroencephalographic markers of sensory processing and attention in an auditory oddball paradigm, and of covert movement attempts in a command-following paradigm. Results: In 3 participants with DoC, EEG markers of active attempted command following revealed cognitive function that clinical assessment had failed to detect. These same 3 individuals could also be distinguished from the rest of their group by 2 event-related potentials that correlate with sensory processing and orienting attention in the oddball paradigm. Considered across the whole participant group, magnitudes of these 2 ERP markers significantly increased as cognitive recovery progressed (ANOVA: each p < 0.001); viewed jointly, the 2 ERP markers cleanly delineated the 4 cognitive states. Discussion: Despite heterogeneity of brain injuries and brain development, our objective EEG markers reflected cognitive recovery independent of motor function. Two of these markers required no active participation. Together, they allowed us to identify 3 individuals who meet the criteria for cognitive-motor dissociation. To diagnose, prognose, and track cognitive recovery accurately, such markers should be used in pediatrics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA