Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pediatr ; 10: 881287, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615634

RESUMO

Congenital diaphragmatic hernia is a structural birth defect of the diaphragm, with lung hypoplasia and persistent pulmonary hypertension. Aside from vascular defects, the lungs show a disturbed balance of differentiated airway epithelial cells. The Sry related HMG box protein SOX2 is an important transcription factor for proper differentiation of the lung epithelium. The transcriptional activity of SOX2 depends on interaction with other proteins and the identification of SOX2-associating factors may reveal important complexes involved in the disturbed differentiation in CDH. To identify SOX2-associating proteins, we purified SOX2 complexes from embryonic mouse lungs at 18.5 days of gestation. Mass spectrometry analysis of SOX2-associated proteins identified several potential candidates, among which were the Chromodomain Helicase DNA binding protein 4 (CHD4), Cut-Like Homeobox1 (CUX1), and the Forkhead box proteins FOXP2 and FOXP4. We analyzed the expression patterns of FOXP2, FOXP4, CHD4, and CUX1 in lung during development and showed co-localization with SOX2. Co-immunoprecipitations validated the interactions of these four transcription factors with SOX2, and large-scale chromatin immunoprecipitation (ChIP) data indicated that SOX2 and CHD4 bound to unique sites in the genome, but also co-occupied identical regions, suggesting that these complexes could be involved in co-regulation of genes involved in the respiratory system.

2.
Respir Res ; 17: 44, 2016 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-27107715

RESUMO

Inspired by the increasing burden of lung associated diseases in society and an growing demand to accommodate patients, great efforts by the scientific community produce an increasing stream of data that are focused on delineating the basic principles of lung development and growth, as well as understanding the biomechanical properties to build artificial lung devices. In addition, the continuing efforts to better define the disease origin, progression and pathology by basic scientists and clinicians contributes to insights in the basic principles of lung biology. However, the use of different model systems, experimental approaches and readout systems may generate somewhat conflicting or contradictory results. In an effort to summarize the latest developments in the lung epithelial stem cell biology, we provide an overview of the current status of the field. We first describe the different stem cells, or progenitor cells, residing in the homeostatic lung. Next, we focus on the plasticity of the different cell types upon several injury-induced activation or repair models, and highlight the regenerative capacity of lung cells. Lastly, we summarize the generation of lung mimics, such as air-liquid interface cultures, organoids and lung on a chip, that are required to test emerging hypotheses. Moreover, the increasing collaboration between distinct specializations will contribute to the eventual development of an artificial lung device capable of assisting reduced lung function and capacity in human patients.


Assuntos
Órgãos Bioartificiais , Transplante de Pulmão/instrumentação , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Regeneração/fisiologia , Células-Tronco/citologia , Animais , Biomimética/instrumentação , Humanos , Respiração Artificial/instrumentação , Transplante de Células-Tronco/métodos , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
3.
Anal Bioanal Chem ; 405(8): 2495-503, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23314484

RESUMO

A simple, selective, and sensitive method utilizing tritium ((3)H) release from (3)H-deoxyuridine 5'-monophosphate (dUMP) substrate for accurate and precise determination of the low basal thymidylate synthase activity (TSA) in normal healthy peripheral blood mononuclear cells (PBMCs) was developed and validated. The method is based on the removal of the remaining substrate after the TSA reaction by absorption onto activated carbon and measurement of the supernatant fluid by liquid scintillation counting. The method background was substantially decreased by using lyophilized substrate and optimized binding conditions of remaining substrate onto carbon after TSA reaction. The concentration of cofactor N (5),N (10) methylene-(6R,S)-tetrahydrofolate was increased to obtain maximal TSA. Method sensitivity was further increased by omission of ethylenediaminetetraacetic acid from the reaction mix and by using longer reaction times. The validation parameters included specificity, linearity, sensitivity, precision, and stability. The lower limit of quantification was 25 µg PBMC cytosolic lysate, which released 1.4 pmol (3)H/h. TSA was stable in PBMC pellets stored for 6 months at -80 °C. The applicability of the method was demonstrated by the successful determination of TSA in PBMC cytosolic lysates from ten healthy volunteers with and without the specific TSA inhibitor FdUMP.


Assuntos
Ensaios Enzimáticos/métodos , Leucócitos Mononucleares/enzimologia , Timidilato Sintase/química , Linhagem Celular , Células Cultivadas , Humanos , Cinética , Leucócitos Mononucleares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...