Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Soc Mass Spectrom ; 35(6): 1168-1177, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38708575

RESUMO

The present study aims to explore the potential application of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for real-time monitoring of microbial volatile organic compounds (MVOCs). This investigation can be broadly divided into two parts. First, a selection of 14 MVOCs was made based on previous research that characterized the MVOC emissions of Trichoderma atroviride, which is a filamentous fungus widely used as a biocontrol agent. The analysis of gas-phase standards using PTR-ToF-MS allowed for the categorization of these 14 MVOCs into two groups: the first group primarily undergoes nondissociative proton transfer, resulting in the formation of protonated parent ions, while the second group mainly undergoes dissociative proton transfer, leading to the formation of fragment ions. In the second part of this investigation, the emission of MVOCs from samples of T. atroviride was continuously monitored over a period of five days using PTR-ToF-MS. This also included the first quantitative online analysis of 6-amyl-α-pyrone (6-PP), a key MVOC emitted by T. atroviride. The 6-PP emissions of T. atroviride cultures were characterized by a gradual increase over the first two days of cultivation, reaching a plateau-like maximum with volume mixing ratios exceeding 600 ppbv on days three and four. This was followed by a marked decrease, where the 6-PP volume mixing ratios plummeted to below 50 ppbv on day five. This observed sudden decrease in 6-PP emissions coincided with the start of sporulation of the T. atroviride cultures as well as increasing intensities of product ions associated with 1-octen-3-ol and 3-octanone, whereas both these MVOCs were previously associated with sporulation in T. atroviride. The study also presents the observations and discussion of further MVOC emissions from the T. atroviride samples and concludes with a critical assessment of the possible applications and limitations of PTR-ToF-MS for the online monitoring of MVOCs from biological samples in real time.


Assuntos
Hypocreales , Espectrometria de Massas , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Compostos Orgânicos Voláteis/química , Espectrometria de Massas/métodos , Hypocreales/química , Prótons , Agentes de Controle Biológico/química , Agentes de Controle Biológico/análise , Trichoderma/química , Trichoderma/metabolismo , Pironas/análise , Pironas/química
2.
J Chem Phys ; 159(20)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38010328

RESUMO

Infrared spectra of C60+ and C120+, obtained via helium messenger spectroscopy, are reported. For C60+, new absorption features have been found just above the discrete vibrational spectrum of the ion. The absorption profile, which is broad and contains little structure, is assigned to one or more electronic absorption transitions and is in good agreement with predictions from time-dependent density functional theory. It seems likely that the transitions observed correspond to excitation from the 2A1u electronic ground state to one or both of the low-lying 2E1u and 2E2u electronic states previously identified as dark states of C60+. These states presumably become optically bright through vibronic coupling and specifically the Jahn-Teller effect. In the case of C120+, the simplest positively charged oligomer of C60, we present the first vibrational spectrum of this ion. Through a comparison with theory, vibrational features are best explained by a peanut-shaped structure for C120+, maintained by covalent bonding between the two C60 units. We have also discovered electronic transitions for C120+, which, similar to C60+, lie just above the vibrational spectrum.

3.
J Am Soc Mass Spectrom ; 34(5): 958-968, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-36995741

RESUMO

Here we explore the potential use of proton transfer reaction/selective reagent ion-time-of-flight-mass spectrometry (PTR/SRI-ToF-MS) to monitor hexafluoroisopropanol (HFIP) in breath. Investigations of the reagent ions H3O+, NO+, and O2+• are reported using dry (relative humidity (rH) ≈ 0%) and humid (rH ≈ 100%)) nitrogen gas containing traces of HFIP, i.e., divorced from the complex chemical environment of exhaled breath. HFIP shows no observable reaction with H3O+ and NO+, but it does react efficiently with O2+• via dissociative charge transfer resulting in CHF2+, CF3+, C2HF2O+, and C2H2F3O+. A minor competing hydride abstraction channel results in C3HF6O+ + HO2• and, following an elimination of HF, C3F5O+. There are two issues associated with the use of the three dominant product ions of HFIP, CHF2+, CF3+, and C2H2F3O+, to monitor it in breath. One is that CHF2+ and CF3+ also result from the reaction of O2+• with the more abundant sevoflurane. The second is the facile reaction of these product ions with water, which reduces analytical sensitivity to detect HFIP in humid breath. To overcome the first issue, C2H2F3O+ is the ion marker for HFIP. The second issue is surmounted by using a Nafion tube to reduce the breath sample's humidity prior to its introduction into drift tube. The success of this approach is illustrated by comparing the product ion signals either in dry or humid nitrogen gas flows and with or without the use of the Nafion tube, and practically from the analysis of a postoperative exhaled breath sample from a patient volunteer.


Assuntos
Gases , Nitrogênio , Humanos , Espectrometria de Massas/métodos , Íons , Testes Respiratórios/métodos
4.
Phys Chem Chem Phys ; 24(38): 23142-23151, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36148794

RESUMO

We report the first helium-tagged electronic spectra of cationic adamantane clusters, along with its singly, doubly, and triply dehydrogenated analogues embedded in helium droplets. Absorption spectra were measured by recording the evaporation of helium atoms as a function of laser wavelength in the range of 300-2150 nm. Experimental spectra are coupled with simulated spectra obtained from quantum chemical calculations. The spectrum of cationic adamantane agrees with the electronic photodissociation spectrum measured previously, with an additional low-energy absorption at around 1000 nm. The spectra of the dehydrogenated molecules present broad absorptions exclusively in the high-energy region (300-600 nm). For the higher order adamantane dimer and trimer ions, strong absorptions are observed in the low-energy region (900-2150 nm), rationalised by transitions delocalised over two adamantane units.

5.
J Phys Chem A ; 125(36): 7813-7824, 2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34436885

RESUMO

The adsorption of up to ∼100 helium atoms on cations of the planar polycyclic aromatic hydrocarbons (PAHs) anthracene, phenanthrene, fluoranthene, and pyrene was studied by combining helium nanodroplet mass spectrometry with classical and quantum computational methods. Recorded time-of-flight mass spectra reveal a unique set of structural features in the ion abundance as a function of the number of attached helium atoms for each of the investigated PAHs. Path-integral molecular dynamics simulations were used with a polarizable potential to determine the underlying adsorption patterns of helium around the studied PAH cations and in good general agreement with the experimental data. The calculated structures of the helium-PAH complexes indicate that the arrangement of adsorbed helium atoms is highly sensitive toward the structure of the solvated PAH cation. Closures of the first solvation shell around the studied PAH cations are suggested to lie between 29 and 37 adsorbed helium atoms depending on the specific PAH cation. Helium atoms are found to preferentially adsorb on these PAHs following the 3×3 commensurate pattern common for graphitic surfaces, in contrast to larger carbonaceous molecules like corannulene, coronene, and fullerenes that exhibit a 1 × 1 commensurate phase.

6.
Phys Chem Chem Phys ; 21(45): 25362-25368, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31702748

RESUMO

We investigate the photodissociation of helium-solvated cesium dimer cations using action spectroscopy and quantum chemical calculations. The spectrum of Cs2He+ shows three distinct absorption bands into both bound and dissociative states. Upon solvation with further helium atoms, considerable shifts of the absorption bands are observed, exceeding 0.1 eV (850 cm-1) already for Cs2He10+, along with significant broadening. The shifts are highly sensitive to the character of the excited state. Our calculations show that helium atoms adsorb on the ends of Cs2+. The shifts are particularly pronounced if the excited state orbitals extend to the area occupied by the helium atoms. In this case, Pauli repulsion leads to a deformation of the excited state orbitals, resulting in the observed blue shift of the transition. Since the position of the weakly bound helium atoms is ill defined, Pauli repulsion also explains the broadening.

7.
J Am Soc Mass Spectrom ; 30(12): 2632-2636, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31650463

RESUMO

We present a study of cationic and protonated clusters of neon and krypton. Recent studies using argon have shown that protonated rare gas clusters can have very different magic sizes than pure, cationic clusters. Here, we find that neon behaves similarly to argon, but that the cationic krypton is more similar to its protonated counterparts than the lighter rare gases are, sharing many of the same magic numbers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...