Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 590(7846): 445-450, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408409

RESUMO

The brainstem is a key centre in the control of body movements. Although the precise nature of brainstem cell types and circuits that are central to full-body locomotion are becoming known1-5, efforts to understand the neuronal underpinnings of skilled forelimb movements have focused predominantly on supra-brainstem centres and the spinal cord6-12. Here we define the logic of a functional map for skilled forelimb movements within the lateral rostral medulla (latRM) of the brainstem. Using in vivo electrophysiology in freely moving mice, we reveal a neuronal code with tuning of latRM populations to distinct forelimb actions. These include reaching and food handling, both of which are impaired by perturbation of excitatory latRM neurons. Through the combinatorial use of genetics and viral tracing, we demonstrate that excitatory latRM neurons segregate into distinct populations by axonal target, and act through the differential recruitment of intra-brainstem and spinal circuits. Investigating the behavioural potential of projection-stratified latRM populations, we find that the optogenetic stimulation of these populations can elicit diverse forelimb movements, with each behaviour stably expressed by individual mice. In summary, projection-stratified brainstem populations encode action phases and together serve as putative building blocks for regulating key features of complex forelimb movements, identifying substrates of the brainstem for skilled forelimb behaviours.


Assuntos
Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Membro Anterior/inervação , Membro Anterior/fisiologia , Destreza Motora/fisiologia , Vias Neurais , Animais , Feminino , Masculino , Bulbo/citologia , Bulbo/fisiologia , Camundongos , Movimento
2.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30255129

RESUMO

Rett syndrome (RTT) is caused in most cases by loss-of-function mutations in the X-linked gene encoding methyl CpG-binding protein 2 (MECP2). Understanding the pathological processes impacting sensory-motor control represents a major challenge for clinical management of individuals affected by RTT, but the underlying molecular and neuronal modifications remain unclear. We find that symptomatic male Mecp2 knockout (KO) mice show atypically elevated parvalbumin (PV) expression in both somatosensory (S1) and motor (M1) cortices together with excessive excitatory inputs converging onto PV-expressing interneurons (INs). In accordance, high-speed voltage-sensitive dye imaging shows reduced amplitude and spatial spread of synaptically induced neuronal depolarizations in S1 of Mecp2 KO mice. Moreover, motor learning-dependent changes of PV expression and structural synaptic plasticity typically occurring on PV+ INs in M1 are impaired in symptomatic Mecp2 KO mice. Finally, we find similar abnormalities of PV networks plasticity in symptomatic female Mecp2 heterozygous mice. These results indicate that in Mecp2 mutant mice the configuration of PV+ INs network is shifted toward an atypical plasticity state in relevant cortical areas compatible with the sensory-motor dysfunctions characteristics of RTT.


Assuntos
Interneurônios/metabolismo , Proteína 2 de Ligação a Metil-CpG/metabolismo , Plasticidade Neuronal/fisiologia , Parvalbuminas/metabolismo , Síndrome de Rett/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Knockout , Neurônios/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...