Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1359019, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38655078

RESUMO

The extraction of nickel, cobalt, and other metals from laterite ores via bioleaching with sulfur-oxidizing and ferric iron-reducing, autotrophic, acidophilic bacteria (e.g. Acidithiobacillus species) has been demonstrated under anaerobic as well as aerobic conditions in experiments in different laboratories. This study demonstrated the bioleaching of laterites from Brazil with the addition of elemental sulfur in 2-L stirred-tank bioreactors with pure and mixed cultures of Acidithiobacillus and Sulfobacillus species under aerobic conditions. In particular, a potential disturbance of mineral dissolution under aerobic conditions by ferrous iron-oxidizing acidophiles likely introduced as contaminants in an applied bioleaching process was investigated with Leptospirillum ferrooxidans at 30°C and Leptospirillum ferriphilum at 40°C, at maintained pH 1.5 or without maintained pH leading to an increase in acidity (with pH values <1.0) due to the biological production of sulfuric acid. Despite the proportion of ferrous iron to the total amount of extracted iron in the solution being drastically reduced in the presence of Leptospirillum species, there was a negligible effect on the extraction efficiency of nickel and cobalt, which is positive news for laterite bioleaching under aerobic conditions.

2.
Res Microbiol ; 175(1-2): 104110, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37544391

RESUMO

Bioleaching processes and acid mine drainage (AMD) generation are mainly driven by aerobic microbial iron(II) and inorganic sulfur/compound oxidation. Dissimilatory iron(III) reduction coupled to sulfur/compound oxidation (DIRSO) by acidophilic microorganisms has been described for anaerobic cultures, but iron reduction was observed under aerobic conditions as well. Aim of this study was to explore reaction rates and mechanisms of this process. Cell-specific iron(III) reduction rates for different Acidithiobacillus (At.) strains during batch culture growth or stationary phase with iron(III) (∼40 mM) as electron acceptor and elemental sulfur or tetrathionate as electron donor (1% or 5 mM, respectively) were determined. The rates were highest under anaerobic conditions for the At. ferrooxidans type strain with 6.8 × 106 and 1.1 × 107 reduced iron(III) ions per second per cell for growth on elemental sulfur and tetrathionate, respectively. The iron(III) reduction rates were somehow lower for the anaerobically sulfur grown archaeon Ferroplasma acidiphilum, and lowest for the sulfur grown At. caldus type strain under aerobic conditions (1.7 × 106 and 7.3 × 104 reduced iron(III) ions per second per cell, respectively). The rates for five strains of At. thiooxidans (aerobe) were in between those for At. ferrooxidans (anaerobe) and At. caldus (aerobe). There was no pronounced pH dependence of iron(III) reduction rates in the range of pH 1.0-1.9 for the type strains of all species but rates increased with increasing pH for four other At. thiooxidans strains. Thiosulfate as sulfur intermediate was found for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III) but not during anaerobic growths on elemental sulfur and iron(III), and a small concentration was measured during aerobic growths on tetrathionate without iron(III). For the At. thiooxidans type strain thiosulfate was found with tetrathionate grown cells under aerobic conditions in presence and absence of iron(III), but not with sulfur grown cells. Evidence for hydrogen sulfide production at low pH was found for the At. ferrooxidans as well as the At. thiooxidans type strains during microaerophilic growth on elemental sulfur and for At. ferrooxidans during anaerobic growths on tetrathionate and iron(III). The occurrence of sulfur compound intermediates supports the hypothesis that chemical reduction of iron(III) ions takes place by sulfur compounds released by the microbial cells.


Assuntos
Acidithiobacillus , Ferro , Ferro/metabolismo , Tiossulfatos/metabolismo , Oxirredução , Acidithiobacillus/metabolismo , Enxofre/metabolismo
3.
Chemosphere ; 349: 140945, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104736

RESUMO

Chalcopyrite is the most abundant Cu-sulfide and economically the most important copper mineral in the world. It is known to be recalcitrant in hydrometallurgical processing and therefore chalcopyrite bioleaching has been thoroughly studied for improvement of processing. In this study, the microbial diversity in 22 samples from the Sarcheshmeh copper mine in Iran was investigated via 16S rRNA gene sequencing. In total, 1063 species were recognized after metagenomic analysis including the ferrous iron- and sulfur-oxidizing acidophilic genera Acidithiobacillus, Leptospirillum, Sulfobacillus and Ferroplasma. Mesophilic as well as moderately thermophilic acidophilic ferrous iron- and sulfur-oxidizing microorganisms were enriched from these samples and bioleaching was studied in shake flask experiments using a chalcopyrite-containing ore sample from the same mine. These enrichment cultures were further used as inoculum for bioleaching experiments in percolation columns for simulating heap bioleaching. Addition of 100 mM NaCl to the bioleaching medium was assessed to improve the dissolution rate of chalcopyrite. For comparison, bioleaching in stirred tank reactors with a defined microbial consortium was carried out as well. While just maximal 32% copper could be extracted in the flask bioleaching experiments, 73% and 76% of copper recovery was recorded after 30 and 10 days bioleaching in columns and bioreactors, respectively. Based on the results, both, the application of moderately thermophilic acidophilic bacteria in stirred tank bioreactors, and natural enrichment cultures of mesoacidophiles, with addition of 100 mM NaCl in column percolators with agglomerated ore allowed for a robust chalcopyrite dissolution and copper recovery from Sarcheshmeh copper ore via bioleaching.


Assuntos
Cobre , Microbiota , RNA Ribossômico 16S/genética , Cloreto de Sódio , Reatores Biológicos/microbiologia , Ferro , Enxofre , Sulfetos
5.
Front Microbiol ; 14: 1173613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886064

RESUMO

In order to expand the knowledge of microbial ecosystems from deep-sea hydrothermal vent systems located on the Central and South-East Indian Ridge, we sampled hydrothermal fluids, massive sulfides, ambient water and sediments of six distinct vent fields. Most of these vent sites were only recently discovered in the course of the German exploration program for massive sulfide deposits and no previous studies of the respective microbial communities exist. Apart from typically vent-associated chemosynthetic members of the orders Campylobacterales, Mariprofundales, and Thiomicrospirales, high numbers of uncultured and unspecified Bacteria were identified via 16S rRNA gene analyses in hydrothermal fluid and massive sulfide samples. The sampled sediments however, were characterized by an overall lack of chemosynthetic Bacteria and the presence of high proportions of low abundant bacterial groups. The archaeal communities were generally less diverse and mostly dominated by members of Nitrosopumilales and Woesearchaeales, partly exhibiting high proportions of unassigned Archaea. Correlations with environmental parameters were primarily observed for sediment communities and for microbial species (associated with the nitrogen cycle) in samples from a recently identified vent field, which was geochemically distinct from all other sampled sites. Enrichment cultures of diffuse fluids demonstrated a great potential for hydrogen oxidation coupled to the reduction of various electron-acceptors with high abundances of Hydrogenovibrio and Sulfurimonas species. Overall, given the large number of currently uncultured and unspecified microorganisms identified in the vent communities, their respective metabolic traits, ecosystem functions and mediated biogeochemical processes have still to be resolved for estimating consequences of potential environmental disturbances by future mining activities.

6.
Appl Microbiol Biotechnol ; 106(21): 6933-6952, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36194263

RESUMO

Bioleaching of metal sulfides is performed by diverse microorganisms. The dissolution of metal sulfides occurs via two chemical pathways, either the thiosulfate or the polysulfide pathway. These are determined by the metal sulfides' mineralogy and their acid solubility. The microbial cell enables metal sulfide dissolution via oxidation of iron(II) ions and inorganic sulfur compounds. Thereby, the metal sulfide attacking agents iron(III) ions and protons are generated. Cells are active either in a planktonic state or attached to the mineral surface, forming biofilms. This review, as an update of the previous one (Vera et al., 2013a), summarizes some recent discoveries relevant to bioleaching microorganisms, contributing to a better understanding of their lifestyle. These comprise phylogeny, chemical pathways, surface science, biochemistry of iron and sulfur metabolism, anaerobic metabolism, cell-cell communication, molecular biology, and biofilm lifestyle. Recent advances from genetic engineering applied to bioleaching microorganisms will allow in the future to better understand important aspects of their physiology, as well as to open new possibilities for synthetic biology applications of leaching microbial consortia. KEY POINTS: • Leaching of metal sulfides is strongly enhanced by microorganisms • Biofilm formation and extracellular polymer production influences bioleaching • Cell interactions in mixed bioleaching cultures are key for process optimization.


Assuntos
Prótons , Tiossulfatos , Compostos Férricos , Metais/metabolismo , Sulfetos/metabolismo , Ferro/metabolismo , Minerais , Enxofre/metabolismo , Polímeros , Compostos Ferrosos
8.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36251741

RESUMO

A novel thermoacidophilic archeaon, strain J1T (=DSM 112778T,=JCM 34702T), was isolated from a hot pool in a volcanic area of Java, Indonesia. Cells of the strain were irregular, motile cocci of 1.0-1.2 µm diameter. Aerobic, organoheterotrophic growth with casamino acids was observed at an optimum temperature of 70 °C in a range of 55-78 °C and at an optimum pH of 3 in a range of 1.5 to 5. Various organic compounds were utilized, including a greater variety of sugars than has been reported for growth of other species of the genus. Chemolithoautotrophic growth was observed with reduced sulphur compounds, including mineral sulphides. Ferric iron was reduced during anaerobic growth with elemental sulphur. Cellular lipids were calditoglycerocaldarchaeol and caldarchaeol with some derivates. The organism contained the respiratory quinone caldariellaquinone. On the basis of phylogenetic and chemotaxonomic comparison with its closest relatives, it was concluded that strain J1T represents a novel species, for which the name Metallosphaera javensis is proposed. Low DNA-DNA relatedness values (16S rRNA gene <98.4%, average nucleotide identity (ANI) <80.1%) distinguished J1T from other species of the genus Metallosphaera and the DNA G+C content of 47.3% is the highest among the known species of the genus.


Assuntos
Archaea , Sulfolobaceae , Archaea/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Ferro , Nucleotídeos , Filogenia , Quinonas , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Açúcares , Sulfetos , Enxofre , Compostos de Enxofre
9.
Appl Microbiol Biotechnol ; 106(18): 5913-5928, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36038754

RESUMO

This review provides an update to the last mini-review with the same title pertaining to recent developments in bioleaching and biooxidation published in 2013 (Brierley and Brierley). In the intervening almost 10 years, microbial processes for sulfide minerals have seen increased acceptance and ongoing but also declining commercial application in copper, gold, nickel and cobalt production. These processes have been applied to heap and tank leaching, nowadays termed biomining, but increasing concerns about the social acceptance of mining has also seen the re-emergence of in situ leaching and quest for broader applicability beyond uranium and copper. Besides metal sulfide oxidation, mineral dissolution via reductive microbial activities has seen experimental application to laterite minerals. And as resources decline or costs for their exploitation rise, mine waste rock and tailings have become more attractive to consider as easily accessible resources. As an advantage, they have already been removed from the ground and in some cases contain ore grades exceeding that of those currently being mined. These factors promote concepts of circular economy and efficient use and valorization of waste materials. KEY POINTS: • Bioleaching of copper sulfide ore deposits is producing less copper today • Biooxidation of refractory gold ores is producing more gold than in the past • Available data suggest bioleaching and biooxidation processes reduce carbon emissions.


Assuntos
Cobre , Mineração , Ouro , Minerais , Sulfetos
10.
Front Microbiol ; 12: 686276, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630341

RESUMO

A novel deltaproteobacterial, mesophilic, hydrogen-oxidizing, and sulfate-reducing bacterium (strain KaireiS1) was highly enriched from an inactive chimney located in the active zone of the Kairei hydrothermal vent field (Central Indian Ridge) in the Indian Ocean. Based on 16S rRNA gene analyses, strain KaireiS1 is the currently only cultured representative of a cluster of uncultured Deltaproteobacteria, positioned within the Desulfobulbaceae family, between the Desulfobulbus genus and the "Cable Bacteria." A facultative autotrophic lifestyle of KaireiS1 is indicated by its growth in the absence of organic compounds, measurements of CO2-fixation rates, and activity measurements of carbon monoxide dehydrogenase, the key enzyme of the reductive Acetyl-CoA pathway. Apart from hydrogen, strain KaireiS1 can also use propionate, lactate, and pentadecane as electron donors. However, the highest cell numbers were reached when grown autotrophically with molecular hydrogen. Hydrogen uptake activity was found in membrane and soluble fractions of cell-free extracts and reached up to 2,981±129 nmol H2*min-1*mg-1 of partially purified protein. Commonly, autotrophic sulfate-reducing bacteria from the Deltaproteobacteria class, thriving in hydrothermal vent habitats are described as thermophiles. Given its physiological characteristics and specific isolation source, strain KaireiS1 demonstrates a previously unnoticed potential for microbial sulfate reduction by autotrophs taking place at moderate temperatures in hydrothermal vent fields.

11.
Water Res ; 203: 117539, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34407485

RESUMO

Red mud (RM) as waste of industrial aluminum production is piling up in huge ponds. RM could be a cost-effective adsorbent for heavy metals, but adsorption is vulnerable to pH changes, metal ions speciation and the occurrence of iron bearing minerals. In this study, the precipitation and elemental speciation transformation relevant to arsenic fate in responding to the addition of RM during arsenopyrite bio-oxidation by Sulfobacillus thermosulfidooxidans was investigated. The results show that the addition of RM significantly changed the arsenic precipitation and the solution chemistry and thus affected the arsenopyrite bio-oxidation and arsenic fate. An addition of a small amount (≤ 4 g/L) of RM substantially promoted arsenopyrite bio-oxidation with formation of SiO2 @ (As, Fe, Al, Si) spherical nanoparticles that can enhance the stability of the immobilized arsenic. The SiO2-based spherical nanoparticles precipitate was mainly composed of jarosites, amorphous ferric arsenate and crystalline scorodite, and its formation were controlled by Fe3+ concentration and solution pH. An addition of increased amount of RM (≥ 6 g/L) resulted in a significant increase of the solution pH and a decrease in the Fe2+ bio-oxidation activity, and spherical nanoparticles were not formed. Consequently, the dissolution of arsenopyrite was inhibited and the release of arsenic was blocked. This study suggests the applicability of RM in mitigation of arsenic pollution from bio-oxidation of As-bearing sulfide minerals.


Assuntos
Arsênio , Arsenicais , Clostridiales , Concentração de Íons de Hidrogênio , Ferro , Compostos de Ferro , Minerais , Oxirredução , Dióxido de Silício , Sulfetos
12.
Artigo em Inglês | MEDLINE | ID: mdl-34236956

RESUMO

A mixotrophic and acidophilic bacterial strain BGR 140T was isolated from mine tailings in the Harz Mountains near Goslar, Germany. Cells of BGR 140T were Gram-stain-positive, endospore-forming, motile and rod-shaped. BGR 140T grew aerobically at 25-55 °C (optimum 45 °C) and at pH 1.5-5.0 (optimum pH 3.0). The results of analysis of the 16S rRNA gene sequences indicated that BGR 140T was phylogenetically related to different members of the genus Sulfobacillus, and the sequence identities to Sulfobacillus acidophilus DSM 10332T, Sulfobacillus thermotolerans DSM 17362T, and Sulfobacillus benefaciens DSM 19468T were 94.8, 91.8 and 91.6 %, respectively. Its cell wall peptidoglycan is A1γ, composed of meso-diaminopimelic acid. The respiratory quinone is DMK-6. The major polar lipids were determined to be glycolipid, phospholipid and phosphatidylglycerol. The predominant fatty acid is 11-cycloheptanoyl-undecanoate. The genomic DNA G+C content is 58.2 mol%. On the basis of the results of phenotypic and genomic analyses, it is concluded that strain BGR 140T represents a novel species of the genus Sulfobacillus, for which the name Sulfobacillus harzensis sp. nov. is proposed because of its origin. Its type strain is BGR 140T (=DSM 109850T=JCM 39070T).


Assuntos
Clostridiales/classificação , Mineração , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Clostridiales/isolamento & purificação , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Alemanha , Peptidoglicano/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Environ Sci Technol ; 55(12): 7959-7969, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34038128

RESUMO

Uranium (U) isotopes are suggested as a tool to trace U reduction. However, noncrystalline U(IV), formed predominantly in near-surface environments, may be complexed and remobilized using ligands under anoxic conditions. This may cause additional U isotope fractionation and alter the signatures generated by U reduction. Here, we investigate the efficacy of noncrystalline U(IV) mobilization by ligand complexation and the associated U isotope fractionation. Noncrystalline U(IV) was produced via the reduction of U(VI) (400 µM) by Shewanella oneidensis MR-1 and was subsequently mobilized with EDTA (1 mM), citrate (1 mM), or bicarbonate (500 mM) in batch experiments. Complexation with all investigated ligands resulted in significant mobilization of U(IV) and led to an enrichment of 238U in the mobilized fraction (δ238U = 0.4-0.7 ‰ for EDTA; 0.3 ‰ for citrate; 0.2-0.3 ‰ for bicarbonate). For mobilization with bicarbonate, a Rayleigh approach was the most suitable isotope fractionation model, yielding a fractionation factor α of 1.00026-1.00036. Mobilization with EDTA could be modeled with equilibrium isotope fractionation (α: 1.00039-1.00049). The results show that U isotope fractionation associated with U(IV) mobilization under anoxic conditions is significant and needs to be considered when applying U isotopes in remediation monitoring or as a paleo-redox proxy.


Assuntos
Urânio , Fracionamento Químico , Isótopos , Ligantes , Oxirredução , Shewanella , Urânio/análise
14.
Curr Issues Mol Biol ; 40: 25-48, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32159522

RESUMO

Acidophilic microorganisms can thrive in both natural and man-made environments. Natural acidic environments comprise hydrothermal sites on land or in the deep sea, cave systems, acid sulfate soils and acidic fens, as well as naturally exposed ore deposits (gossans). Man-made acidic environments are mostly mine sites including mine waste dumps and tailings, acid mine drainage and biomining operations. The biogeochemical cycles of sulfur and iron, rather than those of carbon and nitrogen, assume centre stage in these environments. Ferrous iron and reduced sulfur compounds originating from geothermal activity or mineral weathering provide energy sources for acidophilic, chemolithotrophic iron- and sulfur-oxidizing bacteria and archaea (including species that are autotrophic, heterotrophic or mixotrophic) and, in contrast to most other types of environments, these are often numerically dominant in acidic sites. Anaerobic growth of acidophiles can occur via the reduction of ferric iron, elemental sulfur or sulfate. While the activities of acidophiles can be harmful to the environment, as in the case of acid mine drainage, they can also be used for the extraction and recovery of metals, as in the case of biomining. Considering the important roles of acidophiles in biogeochemical cycles, pollution and biotechnology, there is a strong need to understanding of their physiology, biochemistry and ecology.


Assuntos
Archaea , Bactérias , Cavernas/microbiologia , Fontes Termais/química , Fontes Termais/microbiologia , Mineração , Solo/química , Sulfatos/metabolismo , Archaea/classificação , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Carbono/metabolismo , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Nitrogênio/metabolismo , Oceanos e Mares , Oxirredução
15.
Microbiome ; 8(1): 89, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32517753

RESUMO

BACKGROUND: Recent studies have significantly expanded our knowledge of viral diversity and functions in the environment. Exploring the ecological relationships between viruses, hosts, and the environment is a crucial first step towards a deeper understanding of the complex and dynamic interplays among them. RESULTS: Here, we obtained extensive 16S rRNA gene amplicon, metagenomics sequencing, and geochemical datasets from different depths of two highly stratified sulfidic mine tailings cores with steep geochemical gradients especially pH, and explored how variations in viral community composition and functions were coupled to the co-existing prokaryotic assemblages and the varying environmental conditions. Our data showed that many viruses in the mine tailings represented novel genera, based on gene-sharing networks. Siphoviridae, Podoviridae, and Myoviridae dominated the classified viruses in the surface tailings and deeper layers. Both viral richness and normalized coverage increased with depth in the tailings cores and were significantly correlated with geochemical properties, for example, pH. Viral richness was also coupled to prokaryotic richness (Pearson's r = 0.65, P = 0.032). The enrichment of prophages in the surface mine tailings suggested a preference of lysogenic viral lifestyle in more acidic conditions. Community-wide comparative analyses clearly showed that viruses in the surface tailings encoded genes mostly with unknown functions while viruses in the deeper layers contained genes mainly annotated as conventional functions related to metabolism and structure. Notably, significantly abundant assimilatory sulfate reduction genes were identified from the deeper tailings layers and they were widespread in viruses predicted to infect diverse bacterial phyla. CONCLUSIONS: Overall, our results revealed a depth-related distribution of viral populations in the extreme and heterogeneous tailings system. The viruses may interact with diverse hosts and dynamic environmental conditions and likely play a role in the functioning of microbial community and modulate sulfur cycles in situ. Video Abstract.


Assuntos
Ácidos , Bactérias/virologia , Metagenômica , Mineração , Sulfetos/metabolismo , Vírus/genética , Vírus/isolamento & purificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Concentração de Íons de Hidrogênio , RNA Ribossômico 16S/genética , Vírus/metabolismo
16.
J Vis Exp ; (152)2019 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-31633683

RESUMO

Laboratory studies investigating subsurface microbial processes, such as metal leaching in deep ore deposits (biomining), share common and challenging obstacles, including the special environmental conditions that need to be replicated, e.g., high pressure and in some cases acidic solutions. The former requires an experimental setup suitable for pressurization up to 100 bar, while the latter demands a fluid container with high chemical resistance against corrosion and unwanted chemical reactions with the container wall. To meet these conditions for an application in the field of in situ biomining, a special flexible gold-titanium reaction cell inside a rocking high-pressure reactor was used in this study. The described system allowed simulation of in situ biomining through sulfur-driven microbial iron reduction in an anoxic, pressure-controlled, highly chemically inert experimental environment. The flexible gold-titanium reaction cell can accommodate up to 100 mL of sample solution, which can be sampled at any given time point while the system maintains the desired pressure. Experiments can be performed on timescales ranging from hours to months. Assembling the high-pressure reactor system is fairly time consuming. Nevertheless, when complex and challenging (microbiological) processes occurring in the earth's deep subsurface in chemically aggressive fluids have to be investigated in the laboratory, the advantages of this system outweigh the disadvantages. The results found that even at high pressure the microbial consortium is active, but at significantly lower metabolic rates.


Assuntos
Ouro , Consórcios Microbianos/fisiologia , Mineração/métodos , Pressão , Titânio , Reatores Biológicos , Enxofre/metabolismo
17.
Sci Rep ; 9(1): 10294, 2019 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-31312015

RESUMO

Formation of mineral-organic associations is a key process in the global carbon cycle. Recent concepts propose litter quality-controlled microbial assimilation and direct sorption processes as main factors in transferring carbon from plant litter into mineral-organic associations. We explored the pathways of the formation of mineral-associated organic matter (MOM) in soil profiles along a 120-ky ecosystem gradient that developed under humid climate from the retreating Franz Josef Glacier in New Zealand. We determined the stocks of particulate and mineral-associated carbon, the isotope signature and microbial decomposability of organic matter, and plant and microbial biomarkers (lignin phenols, amino sugars and acids) in MOM. Results revealed that litter quality had little effect on the accumulation of mineral-associated carbon and that plant-derived carbon bypassed microbial assimilation at all soil depths. Seemingly, MOM forms by sorption of microbial as well as plant-derived compounds to minerals. The MOM in carbon-saturated topsoil was characterized by the steady exchange of older for recent carbon, while subsoil MOM arises from retention of organic matter transported with percolating water. Overall, MOM formation is not monocausal but involves various mechanisms and processes, with reactive minerals being effective filters capable of erasing chemical differences in organic matter inputs.

18.
Front Microbiol ; 10: 896, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133998

RESUMO

Biooxidation of reduced inorganic sulfur compounds (RISCs) by thermoacidophiles is of particular interest for the biomining industry and for environmental issues, e.g., formation of acid mine drainage (AMD). Up to now, interfacial interactions of acidophiles with elemental sulfur as well as the mechanisms of sulfur oxidation by acidophiles, especially thermoacidophiles, are not yet fully clear. This work focused on how a crenarchaeal isolate Acidianus sp. DSM 29099 interacts with elemental sulfur. Analysis by Confocal laser scanning microscopy (CLSM) and Atomic force microscopy (AFM) in combination with Epifluorescence microscopy (EFM) shows that biofilms on elemental sulfur are characterized by single colonies and a monolayer in first stage and later on 3-D structures with a diameter of up to 100 µm. The analysis of extracellular polymeric substances (EPS) by a non-destructive lectin approach (fluorescence lectin-barcoding analysis) using several fluorochromes shows that intial attachment was featured by footprints rich in biofilm cells that were embedded in an EPS matrix consisting of various glycoconjugates. Wet chemistry data indicate that carbohydrates, proteins, lipids and uronic acids are the main components. Attenuated reflectance (ATR)-Fourier transformation infrared spectroscopy (FTIR) and high-performance anion exchange chromatography with pulsed amperometric detection (HPAE-PAD) indicate glucose and mannose as the main monosaccharides in EPS polysaccharides. EPS composition as well as sugar types in EPS vary according to substrate (sulfur or tetrathionate) and lifestyle (biofilms and planktonic cells). This study provides information on the building blocks/make up as well as dynamics of biofilms of thermoacidophilic archaea in extremely acidic environments.

19.
Adv Biochem Eng Biotechnol ; 167: 327-359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29224081

RESUMO

Biohydrometallurgy comprises the recovery of metals by biologically catalyzed metal dissolution from solids in an aqueous solution. The application of this kind of bioprocessing is described as "biomining," referring to either bioleaching or biooxidation of sulfide metal ores. Acidophilic iron- and sulfur-oxidizing microorganisms are the key to successful biomining. However, minerals such as primary copper sulfides are recalcitrant to dissolution, which is probably due to their semiconductivity or passivation effects, resulting in low reaction rates. Thus, further improvements of the bioleaching process are recommendable. Mineral sulfide dissolution is based on redox reactions and can be accomplished by electrochemical technologies. The impact of electrochemistry on biohydrometallurgy affects processing as well as analytics. Electroanalysis is still the most widely used electrochemical application in mineralogical research. Electrochemical processing can contribute to bioleaching in two ways. The first approach is the coupling of a mineral sulfide to a galvanic partner or electrocatalyst (spontaneous electron transfer). This approach requires only low energy consumption and takes place without technical installations by the addition of higher redox potential minerals (mostly pyrite), carbonic material, or electrocatalytic ions (mostly silver ions). Consequently, the processed mineral (often chalcopyrite) is preferentially dissolved. The second approach is the application of electrolytic bioreactors (controlled electron transfer). The electrochemical regulation of electrolyte properties by such reactors has found most consideration. It implies the regulation of ferrous and ferric ion ratios, which further results in optimized solution redox potential, less passivation effects, and promotion of microbial activity. However, many questions remain open and it is recommended that reactor and electrode designs are improved, with the aim of finding options for simplified biohydrometallurgical processing. This chapter focuses on metal sulfide dissolution via bioleaching and does not include other biohydrometallurgical processes such as microbial metal recovery from solution.


Assuntos
Eletroquímica , Metais , Sulfetos , Reatores Biológicos , Metais/química , Oxirredução , Sulfetos/química , Enxofre
20.
Res Microbiol ; 169(10): 569-575, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30179697

RESUMO

The purpose of this study was to compare the efficacy of galactose and high initial ferrous iron concentrations as inducers for extracellular polymeric substances (EPS) production in planktonic cells of Leptospirillum ferrooxidans and to study cell attachment to a mineral surface in comparison to cells not exposed to such substances. L. ferrooxidans was successfully adapted to grow in a modified 9K medium at different concentrations of galactose (0.15, 0.25, 0.35%) and also at different initial ferrous iron concentrations (18, 27, 36 g/L), which are higher than 9K medium (9 g/L). The experiments were done in shake flasks using ferrous iron as energy source. A comparison of growth kinetics showed a decreasing of maximum specific growth rate of L. ferrooxidans with increasing concentrations of galactose and initial ferrous iron. The EPS content increased and the EPS chemical composition (relative abundance of carbohydrates, proteins and ferric iron) changed with increasing concentrations of galactose and initial ferrous iron. Results revealed that the increase of the bacterial adhesion rather depended on the chemical composition, i.e. relative abundance of the constituents of the EPS, than on the total amount of EPS. The EPS induced by galactose seemed to be "stickier" than the one induced by ferrous iron. Based on the results of this study it is proposed that galactose might enhance biooxidation processes which needs to be tested in future studies.


Assuntos
Bactérias/metabolismo , Biopolímeros/química , Compostos Ferrosos/metabolismo , Galactose/metabolismo , Minerais/metabolismo , Bactérias/química , Bactérias/crescimento & desenvolvimento , Biopolímeros/metabolismo , Meios de Cultura/química , Meios de Cultura/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...