Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 260: 115771, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37657271

RESUMO

Tyrosinase, a copper-containing enzyme critical in melanin biosynthesis, is a key drug target for hyperpigmentation and melanoma in humans. Testing the inhibitory effects of compounds using tyrosinase from Agaricus bisporus (AbTYR) has been a common practice to identify potential therapeutics from synthetic and natural sources. However, structural diversity among human tyrosinase (hTYR) and AbTYR presents a challenge in developing drugs that are therapeutically effective. In this study, we combined retrospective and computational analyses with experimental data to provide insights into the development of new inhibitors targeting both hTYR and AbTYR. We observed contrasting effects of Thiamidol™ and our 4-(4-hydroxyphenyl)piperazin-1-yl-derivative (6) on both enzymes; based on this finding, we aimed to investigate their binding modes in hTYR and AbTYR to identify residues that significantly improve affinity. All the information led to the discovery of compound [4-(4-hydroxyphenyl)piperazin-1-yl](2-methoxyphenyl)methanone (MehT-3, 7), which showed comparable activity on AbTYR (IC50 = 3.52 µM) and hTYR (IC50 = 5.4 µM). Based on these achievements we propose the exploitation of our computational results to provide relevant structural information for the development of newer dual-targeting molecules, which could be preliminarily tested on AbTYR as a rapid and inexpensive screening procedure before being tested on hTYR.


Assuntos
Hiperpigmentação , Monofenol Mono-Oxigenase , Humanos , Estudos Retrospectivos , Cobre , Sistemas de Liberação de Medicamentos , Piperazina
2.
Nat Chem ; 15(10): 1431-1443, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37400597

RESUMO

DNA-encoded chemical libraries (DELs) consist of large chemical compound collections individually linked to DNA barcodes, facilitating pooled construction and screening. However, screening campaigns often fail if the molecular arrangement of the building blocks is not conducive to an efficient interaction with a protein target. Here we postulated that the use of rigid, compact and stereo-defined central scaffolds for DEL synthesis may facilitate the discovery of very specific ligands capable of discriminating between closely related protein targets. We synthesized a DEL comprising 3,735,936 members, featuring the four stereoisomers of 4-aminopyrrolidine-2-carboxylic acid as central scaffolds. The library was screened in comparative selections against pharmaceutically relevant targets and their closely related protein isoforms. Hit validation results revealed a strong impact of stereochemistry, with large affinity differences between stereoisomers. We identified potent isozyme-selective ligands against multiple protein targets. Some of these hits, specific to tumour-associated antigens, demonstrated tumour-selective targeting in vitro and in vivo. Collectively, constructing DELs with stereo-defined elements contributed to high library productivity and ligand selectivity.

3.
Chimia (Aarau) ; 76(5): 388-395, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38069709

RESUMO

DNA-Encoded Chemical Libraries (DELs) have gained momentum over the recent years for the discovery of small-molecule ligands and the technology has been integrated in most of the larger pharmaceutical companies. With this perspective we would like to summarize the development of DEL technology and present some representative DEL-derived hits which may soon enter the pharmaceutical market.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...