Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 51(5): 3324-31, 2012 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-22332822

RESUMO

The molecular structures of the vapors produced on heating dimethylalkoxygallanes of the type [Me(2)Ga(OR)](2) have been determined by gas electron diffraction and ab initio molecular orbital calculations. In the solid state [Me(2)Ga(OCH(2)CH(2)NMe(2))](2) (1) and [Me(2)Ga(OCH(2)CH(2)OMe)](2) (2) adopt dimeric structures, although only the monomeric forms [Me(2)Ga(OCH(2)CH(2)NMe(2))] (1a) and [Me(2)Ga(OCH(2)CH(2)OMe)] (2a) were observed in the gas phase. For comparison the structure of the vapor produced on heating [Me(2)Ga(O(t)Bu)](2) (3) was also studied by gas electron diffraction. In contrast to 1 and 2, compound 3 is dimeric in the gas phase, as well as in the solid state. The gas-phase structures of 1a and 2a exhibit five-membered rings formed by a dative bond between Ga and the donor atom (N or O) from the donor-functionalized alkoxide. In 3 there is no possibility of a monomeric structure being stabilized by the formation of such a dative bond since only a monofunctional alkoxide is present in the molecule.

2.
Dalton Trans ; (29): 3544-60, 2006 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-16855756

RESUMO

A high-yield preparation of the C-monoethynyl para-carborane, 1-Me(3)SiC[triple bond]C-1,12-C2B10H11, from C-monocopper para-carborane and 1-bromo-2-(trimethylsilyl)ethyne, BrC[triple bond]CSiMe(3) is reported. The low-yield preparation of 1,12-(Me3SiC[triple bond]C)2-1,12-C2B10H10 from the C,C'-dicopper para-carborane derivative with 1-bromo-2-(trimethylsilyl)ethyne, BrC[triple bond]CSiMe3, has been re-investigated and other products were identified including the C-monoethynyl-carborane 1-Me3SiC[triple bond]C-1,12-C2B10H11 and two-cage assemblies generated from cage-cage couplings. The contrast in the yields of the monoethynyl and diethynyl products is due to the highly unfavourable coupling process between 1-RC[triple bond]C-12-Cu-1,12-C2B10H10 and the bromoalkyne. The ethynyl group at the cage carbon C(1) strongly influences the chemical reactivity of the cage carbon at C(12)-the first example of the "antipodal effect" affecting the syntheses of para-carborane derivatives. New two-step preparations of 1-ethynyl- and 1,12-bis(ethynyl)-para-carboranes have been developed using a more readily prepared bromoethyne, 1-bromo-3-methyl-1-butyn-3-ol, BrC[triple bond]CCMe2OH. The molecular structures of the two C-monoethynyl-carboranes, 1-RC[triple bond]C-1,12-C2B10H11 (R = H and Me3Si), were experimentally determined using gas-phase electron diffraction (GED). For R = H (R(G) = 0.053) a model with C(5v) symmetry refined to give a C[triple bond]C bond distance of 1.233(5) A. For R = Me3Si (R(G) = 0.048) a model with C(s) symmetry refined to give a C[triple bond]C bond distance of 1.227(5) A. Molecular structures of 1,12-Br2-1,12-C2B10H10, 1-HC[triple bond]C-12-Br-1,12-C2B10H10 and 1,12-(Me(3)SiC[triple bond]C)2-1,12-C2B10H10 were determined by X-ray crystallography. Substituents at the cage carbon atoms on the C2B10 cage skeleton in 1-X-12-Y-1,12-C2B10H10 derivatives invariably lengthen the cage C-B bonds. However, the subtle substituent effects on the tropical B-B bond lengths in these compounds are more complex. The molecular structures of the ethynyl-ortho-carborane, 1-HC[triple bond]C-1,2-C2B10H11 and the ethene, trans-Me3SiBrC=CSiMe3Br are also reported.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA