Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 18(3): 615-628, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36857503

RESUMO

Peptide-mediated delivery of macromolecules in cells has significant potential therapeutic benefits, but no therapy employing cell-penetrating peptides (CPPs) has reached the market after 30 years of investigation due to challenges in the discovery of new, more efficient sequences. Here, we demonstrate a method for in-cell penetration selection-mass spectrometry (in-cell PS-MS) to discover peptides from a synthetic library capable of delivering macromolecule cargo to the cytosol. This method was inspired by recent in vivo selection approaches for cell-surface screening, with an added spatial dimension resulting from subcellular fractionation. A representative peptide discovered in the cytosolic extract, Cyto1a, is nearly 100-fold more active toward antisense phosphorodiamidate morpholino oligomer (PMO) delivery compared to a sequence identified from a whole cell extract, which includes endosomes. Cyto1a is composed of d-residues and two non-α-amino acids, is more stable than its all-l isoform, and is less toxic than known CPPs with comparable activity. Pulse-chase and microscopy experiments revealed that while the PMO-Cyto1a conjugate is likely taken up by endosomes, it can escape to localize to the nucleus without nonspecifically releasing other endosomal components. In-cell PS-MS introduces a means to empirically discover unnatural synthetic peptides for subcellular delivery of therapeutically relevant cargo.


Assuntos
Peptídeos Penetradores de Células , Morfolinos , Membrana Celular , Oligonucleotídeos Antissenso/química , Endossomos , Espectrometria de Massas
2.
ACS Cent Sci ; 8(2): 205-213, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35233452

RESUMO

Antisense peptide nucleic acids (PNAs) have yet to translate to the clinic because of poor cellular uptake, limited solubility, and rapid elimination. Cell-penetrating peptides (CPPs) covalently attached to PNAs may facilitate clinical development by improving uptake into cells. We report an efficient technology that utilizes a fully automated fast-flow instrument to manufacture CPP-conjugated PNAs (PPNAs) in a single shot. The machine is rapid, with each amide bond being formed in 10 s. Anti-IVS2-654 PPNA synthesized with this instrument presented threefold activity compared to transfected PNA in a splice-correction assay. We demonstrated the utility of this approach by chemically synthesizing eight anti-SARS-CoV-2 PPNAs in 1 day. A PPNA targeting the 5' untranslated region of SARS-CoV-2 genomic RNA reduced the viral titer by over 95% in a live virus infection assay (IC50 = 0.8 µM). Our technology can deliver PPNA candidates to further investigate their potential as antiviral agents.

3.
Science ; 375(6583): 894-899, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35201890

RESUMO

The natural product himastatin has an unusual homodimeric structure that presents a substantial synthetic challenge. We report the concise total synthesis of himastatin from readily accessible precursors, incorporating a final-stage dimerization strategy that was inspired by a detailed consideration of the compound's biogenesis. Combining this approach with a modular synthesis enabled expedient access to more than a dozen designed derivatives of himastatin, including synthetic probes that provide insight into its antibiotic activity.


Assuntos
Técnicas de Química Sintética , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/ultraestrutura , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Dimerização , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Peptídeos Cíclicos/farmacologia , Estereoisomerismo
4.
ACS Bio Med Chem Au ; 2(2): 150-160, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37101743

RESUMO

Cell-penetrating peptides (CPPs) can cross the cell membrane to enter the cytosol and deliver otherwise nonpenetrant macromolecules such as proteins and oligonucleotides. For example, recent clinical trials have shown that a CPP attached to phosphorodiamidate morpholino oligomers (PMOs) resulted in higher muscle concentration, increased exon skipping, and dystrophin production relative to another study of the PMO alone in patients of Duchenne muscular dystrophy. Therefore, effective design and the study of CPPs could help enhance therapies for difficult-to-treat diseases. So far, the study of CPPs for PMO delivery has been restricted to predominantly canonical l-peptides. We hypothesized that mirror-image d-peptides could have similar PMO delivery activity as well as enhanced proteolytic stability, facilitating their characterization and quantification from biological milieu. We found that several enantiomeric peptide sequences could deliver a PMO-biotin cargo with similar activities while remaining stable against serum proteolysis. The biotin label allowed for affinity capture of fully intact PMO-peptide conjugates from whole-cell and cytosolic lysates. By profiling a mixture of these constructs in cells, we determined their relative intracellular concentrations. When combined with PMO activity, these concentrations provide a new metric for delivery efficiency, which may be useful for determining which peptide sequence to pursue in further preclinical studies.

5.
JACS Au ; 1(11): 2009-2020, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34841414

RESUMO

Therapeutic macromolecules such as proteins and oligonucleotides can be highly efficacious but are often limited to extracellular targets due to the cell's impermeable membrane. Cell-penetrating peptides (CPPs) are able to deliver such macromolecules into cells, but limited structure-activity relationships and inconsistent literature reports make it difficult to design effective CPPs for a given cargo. For example, polyarginine motifs are common in CPPs, promoting cell uptake at the expense of systemic toxicity. Machine learning may be able to address this challenge by bridging gaps between experimental data in order to discern sequence-activity relationships that evade our intuition. Our earlier data set and deep learning model led to the design of miniproteins (>40 amino acids) for antisense delivery. Here, we leveraged and expanded our model with data augmentation in the short CPP sequence space of the data set to extrapolate and discover short, low-arginine-content CPPs that would be easier to synthesize and amenable to rapid conjugation to desired cargo, and with minimal in vivo toxicity. The lead predicted peptide, termed P6, is as active as a polyarginine CPP for the delivery of an antisense oligomer, while having only one arginine side chain and 18 total residues. We determined the pentalysine motif and the C-terminal cysteine of P6 to be the main drivers of activity. The antisense conjugate was able to enhance corrective splicing in an animal model to produce functional eGFP in heart tissue in vivo while remaining nontoxic up to a dose of 60 mg/kg. In addition, P6 was able to deliver an enzyme to the cytosol of cells. Our findings suggest that, given a data set of long CPPs, we can discover by extrapolation short, active sequences that deliver antisense oligomers.

6.
ACS Cent Sci ; 7(8): 1408-1418, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34471684

RESUMO

Dysregulation of the transcription factor MYC is involved in many human cancers. The dimeric transcription factor complexes of MYC/MAX and MAX/MAX activate or inhibit, respectively, gene transcription upon binding to the same enhancer box DNA. Targeting these complexes in cancer is a long-standing challenge. Inspired by the inhibitory activity of the MAX/MAX dimer, we engineered covalently linked, synthetic homo- and heterodimeric protein complexes to attenuate oncogenic MYC-driven transcription. We prepared the covalent protein complexes (∼20 kDa, 167-231 residues) in a single shot via parallel automated flow synthesis in hours. The stabilized covalent dimers display DNA binding activity, are intrinsically cell-penetrant, and inhibit cancer cell proliferation in different cell lines. RNA sequencing and gene set enrichment analysis in A549 cancer cells confirmed that the synthetic dimers interfere with MYC-driven transcription. Our results demonstrate the potential of automated flow technology to rapidly deliver engineered synthetic protein complex mimetics that can serve as a starting point in developing inhibitors of MYC-driven cancer cell growth.

7.
Nat Chem ; 13(10): 992-1000, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34373596

RESUMO

There are more amino acid permutations within a 40-residue sequence than atoms on Earth. This vast chemical search space hinders the use of human learning to design functional polymers. Here we show how machine learning enables the de novo design of abiotic nuclear-targeting miniproteins to traffic antisense oligomers to the nucleus of cells. We combined high-throughput experimentation with a directed evolution-inspired deep-learning approach in which the molecular structures of natural and unnatural residues are represented as topological fingerprints. The model is able to predict activities beyond the training dataset, and simultaneously deciphers and visualizes sequence-activity predictions. The predicted miniproteins, termed 'Mach', reach an average mass of 10 kDa, are more effective than any previously known variant in cells and can also deliver proteins into the cytosol. The Mach miniproteins are non-toxic and efficiently deliver antisense cargo in mice. These results demonstrate that deep learning can decipher design principles to generate highly active biomolecules that are unlikely to be discovered by empirical approaches.


Assuntos
Núcleo Celular/metabolismo , Aprendizado Profundo , Proteínas/metabolismo , Citosol/metabolismo , Conjuntos de Dados como Assunto , Modelos Moleculares , Peso Molecular , Conformação Proteica , Transporte Proteico , Proteínas/química
8.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34417313

RESUMO

When displayed on erythrocytes, peptides and proteins can drive antigen-specific immune tolerance. Here, we investigated a straightforward approach based on erythrocyte binding to promote antigen-specific tolerance to both peptides and proteins. We first identified a robust erythrocyte-binding ligand. A pool of one million fully d-chiral peptides was injected into mice, blood cells were isolated, and ligands enriched on these cells were identified using nano-liquid chromatography-tandem mass spectrometry. One round of selection yielded a murine erythrocyte-binding ligand with an 80 nM apparent dissociation constant, Kd We modified an 83-kDa bacterial protein and a peptide antigen derived from ovalbumin (OVA) with the identified erythrocyte-binding ligand. An administration of the engineered bacterial protein led to decreased protein-specific antibodies in mice. Similarly, mice given the engineered OVA-derived peptide had decreased inflammatory anti-OVA CD8+ T cell responses. These findings suggest that our tolerance-induction strategy is applicable to both peptide and protein antigens and that our in vivo selection strategy can be used for de novo discovery of robust erythrocyte-binding ligands.


Assuntos
Antígenos/genética , Antígenos/metabolismo , Eritrócitos/metabolismo , Engenharia de Proteínas/métodos , Animais , Antígenos/química , Linhagem Celular , Bases de Dados Factuais , Feminino , Tolerância Imunológica , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ligação Proteica
9.
J Am Chem Soc ; 143(30): 11788-11798, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34289685

RESUMO

Transcription factors (TF), such as Myc, are proteins implicated in disease pathogenesis, with dysregulation of Myc expression in 50% of all human cancers. Still, targeting Myc remains a challenge due to the lack of small molecule binding pockets in the tertiary structure. Here, we report synthetic covalently linked TF mimetics that inhibit oncogenic Myc-driven transcription by antagonistic binding of the target DNA-binding site. We combined automated flow peptide chemistry with palladium(II) oxidative addition complexes (OACs) to engineer covalent protein dimers derived from the DNA-binding domains of Myc, Max, and Omomyc TF analogs. Palladium-mediated cross-coupling of synthesized protein monomers resulted in milligram quantities of seven different covalent homo- and heterodimers. The covalent helical dimers were found to bind DNA and exhibited improved thermal stability. Cell-based studies revealed the Max-Max covalent dimer is cell-penetrating and interfered with Myc-dependent gene transcription resulting in reduced cancer cell proliferation (EC50 of 6 µM in HeLa). RNA sequencing and gene analysis of extracted RNA from treated cancer cells confirmed that the covalent Max-Max homodimer interferes with Myc-dependent transcription. Flow chemistry, combined with palladium(II) OACs, has enabled a practical strategy to generate new bioactive compounds to inhibit tumor cell proliferation.


Assuntos
Indicadores e Reagentes/química , Paládio/química , Engenharia de Proteínas , Proteínas Proto-Oncogênicas c-myc/síntese química , Proliferação de Células/efeitos dos fármacos , DNA/química , Células HeLa , Humanos , Indicadores e Reagentes/farmacologia , Modelos Moleculares , Paládio/farmacologia , Multimerização Proteica , Proteínas Proto-Oncogênicas c-myc/química , Proteínas Proto-Oncogênicas c-myc/genética
10.
Nat Commun ; 12(1): 4396, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34285203

RESUMO

Rapid development of antisense therapies can enable on-demand responses to new viral pathogens and make personalized medicine for genetic diseases practical. Antisense phosphorodiamidate morpholino oligomers (PMOs) are promising candidates to fill such a role, but their challenging synthesis limits their widespread application. To rapidly prototype potential PMO drug candidates, we report a fully automated flow-based oligonucleotide synthesizer. Our optimized synthesis platform reduces coupling times by up to 22-fold compared to previously reported methods. We demonstrate the power of our automated technology with the synthesis of milligram quantities of three candidate therapeutic PMO sequences for an unserved class of Duchenne muscular dystrophy (DMD). To further test our platform, we synthesize a PMO that targets the genomic mRNA of SARS-CoV-2 and demonstrate its antiviral effects. This platform could find broad application not only in designing new SARS-CoV-2 and DMD antisense therapeutics, but also for rapid development of PMO candidates to treat new and emerging diseases.


Assuntos
Técnicas de Química Sintética/instrumentação , Química Farmacêutica/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Morfolinos/síntese química , Oligonucleotídeos Antissenso/síntese química , Animais , COVID-19/virologia , Chlorocebus aethiops , Doenças Transmissíveis Emergentes/tratamento farmacológico , Doenças Transmissíveis Emergentes/microbiologia , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala/métodos , Humanos , Morfolinos/farmacologia , Morfolinos/uso terapêutico , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/genética , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/uso terapêutico , Medicina de Precisão/métodos , RNA Mensageiro/antagonistas & inibidores , RNA Viral/antagonistas & inibidores , SARS-CoV-2/genética , Fatores de Tempo , Células Vero , Tratamento Farmacológico da COVID-19
11.
Angew Chem Int Ed Engl ; 59(28): 11566-11572, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32227406

RESUMO

Capture and release of peptides is often a critical operation in the pathway to discovering materials with novel functions. However, the best methods for efficient capture impede facile release. To overcome this challenge, we report linkers based on secondary amino alcohols for the release of peptides after capture. These amino alcohols are based on serine (seramox) or isoserine (isoseramox) and can be incorporated into peptides during solid-phase peptide synthesis through reductive amination. Both linkers are quantitatively cleaved within minutes under NaIO4 treatment. Cleavage of isoseramox produced a native peptide N-terminus. This linker also showed broad substrate compatibility; incorporation into a synthetic peptide library resulted in the identification of all sequences by nanoLC-MS/MS. The linkers are cell compatible; a cell-penetrating peptide that contained this linker was efficiently captured and identified after uptake into cells. These findings suggest that such secondary amino alcohol based linkers might be suitable tools for peptide-discovery platforms.


Assuntos
Amino Álcoois/química , Biblioteca de Peptídeos , Peptídeos/síntese química , Conformação Proteica
12.
Biochemistry ; 58(38): 3980-3989, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31450889

RESUMO

Phosphorodiamidate morpholino oligonucleotides (PMOs) make up a promising class of therapeutics for genetic disease. PMOs designed for "exon skipping" must be internalized into cells, reach the nucleus, and act on pre-mRNA to mediate their effects. One tactic for improving PMO delivery and exon skipping is to covalently conjugate PMOs to cell-penetrating peptides (CPPs). Here, we report the synthesis of PMOs conjugated to CPP chimeras, constructed by combining multiple CPPs into one sequence. The chimeric CPPs synergistically improve PMO activity up to 70-fold compared to that of the PMO alone and beyond the expected effects of each component peptide. By investigating the design space of CPP chimeras, we demonstrate that all components must be covalently attached, that the order of the two sequences matters, and that peptide identity can tune activity. We identified one chimera (pVEC-Bpep) to investigate in more detail and found that it engages mechanisms of endocytosis different from those of its parent peptides. We also examined the extent to which the beneficial effect comes from improved cellular uptake as opposed to the downstream steps required for exon skipping. Given the complexity of intracellular delivery, we anticipate this work will lead researchers to consider combining molecules with different physicochemical properties to aid in the delivery of biologic cargoes.


Assuntos
Peptídeos Penetradores de Células/farmacologia , Portadores de Fármacos/farmacologia , Morfolinos/administração & dosagem , Oligonucleotídeos Antissenso/administração & dosagem , Proteínas Recombinantes de Fusão/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Peptídeos Penetradores de Células/genética , Sinergismo Farmacológico , Éxons/genética , Terapia Genética/métodos , Células HeLa , Humanos , Microscopia Intravital , Microscopia Confocal , Estudo de Prova de Conceito , Proteínas Recombinantes de Fusão/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...