Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 575(7781): 54-55, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31680126
2.
Nature ; 573(7774): 385-389, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31485075

RESUMO

Phase transitions are driven by collective fluctuations of a system's constituents that emerge at a critical point1. This mechanism has been extensively explored for classical and quantum systems in equilibrium, whose critical behaviour is described by the general theory of phase transitions. Recently, however, fundamentally distinct phase transitions have been discovered for out-of-equilibrium quantum systems, which can exhibit critical behaviour that defies this description and is not well understood1. A paradigmatic example is the many-body localization (MBL) transition, which marks the breakdown of thermalization in an isolated quantum many-body system as its disorder increases beyond a critical value2-11. Characterizing quantum critical behaviour in an MBL system requires probing its entanglement over space and time4,5,7, which has proved experimentally challenging owing to stringent requirements on quantum state preparation and system isolation. Here we observe quantum critical behaviour at the MBL transition in a disordered Bose-Hubbard system and characterize its entanglement via its multi-point quantum correlations. We observe the emergence of strong correlations, accompanied by the onset of anomalous diffusive transport throughout the system, and verify their critical nature by measuring their dependence on the system size. The correlations extend to high orders in the quantum critical regime and appear to form via a sparse network of many-body resonances that spans the entire system12,13. Our results connect the macroscopic phenomenology of the transition to the system's microscopic structure of quantum correlations, and they provide an essential step towards understanding criticality and universality in non-equilibrium systems1,7,13.


Assuntos
Modelos Teóricos , Teoria Quântica , Partículas Elementares , Termodinâmica
3.
Science ; 364(6437): 256-260, 2019 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-31000657

RESUMO

An interacting quantum system that is subject to disorder may cease to thermalize owing to localization of its constituents, thereby marking the breakdown of thermodynamics. The key to understanding this phenomenon lies in the system's entanglement, which is experimentally challenging to measure. We realize such a many-body-localized system in a disordered Bose-Hubbard chain and characterize its entanglement properties through particle fluctuations and correlations. We observe that the particles become localized, suppressing transport and preventing the thermalization of subsystems. Notably, we measure the development of nonlocal correlations, whose evolution is consistent with a logarithmic growth of entanglement entropy, the hallmark of many-body localization. Our work experimentally establishes many-body localization as a qualitatively distinct phenomenon from localization in noninteracting, disordered systems.

4.
Nature ; 546(7659): 519-523, 2017 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-28640260

RESUMO

The interplay between magnetic fields and interacting particles can lead to exotic phases of matter that exhibit topological order and high degrees of spatial entanglement. Although these phases were discovered in a solid-state setting, recent innovations in systems of ultracold neutral atoms-uncharged atoms that do not naturally experience a Lorentz force-allow the synthesis of artificial magnetic, or gauge, fields. This experimental platform holds promise for exploring exotic physics in fractional quantum Hall systems, owing to the microscopic control and precision that is achievable in cold-atom systems. However, so far these experiments have mostly explored the regime of weak interactions, which precludes access to correlated many-body states. Here, through microscopic atomic control and detection, we demonstrate the controlled incorporation of strong interactions into a two-body system with a chiral band structure. We observe and explain the way in which interparticle interactions induce chirality in the propagation dynamics of particles in a ladder-like, real-space lattice governed by the interacting Harper-Hofstadter model, which describes lattice-confined, coherently mobile particles in the presence of a magnetic field. We use a bottom-up strategy to prepare interacting chiral quantum states, thus circumventing the challenges of a top-down approach that begins with a many-body system, the size of which can hinder the preparation of controlled states. Our experimental platform combines all of the necessary components for investigating highly entangled topological states, and our observations provide a benchmark for future experiments in the fractional quantum Hall regime.

5.
Science ; 353(6301): 794-800, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27540168

RESUMO

Statistical mechanics relies on the maximization of entropy in a system at thermal equilibrium. However, an isolated quantum many-body system initialized in a pure state remains pure during Schrödinger evolution, and in this sense it has static, zero entropy. We experimentally studied the emergence of statistical mechanics in a quantum state and observed the fundamental role of quantum entanglement in facilitating this emergence. Microscopy of an evolving quantum system indicates that the full quantum state remains pure, whereas thermalization occurs on a local scale. We directly measured entanglement entropy, which assumes the role of the thermal entropy in thermalization. The entanglement creates local entropy that validates the use of statistical physics for local observables. Our measurements are consistent with the eigenstate thermalization hypothesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...