Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 17(11): 7195-7202, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34623804

RESUMO

Adsorption and desorption of molecules are key processes in extraction and purification of biomolecules, engineering of drug carriers, and designing of surface-specific coatings. To understand the adsorption process on the atomic scale, state-of-the-art quantum mechanical and classical simulation methodologies are widely used. However, studying adsorption using a full quantum mechanical treatment is limited to picoseconds simulation timescales, while classical molecular dynamics simulations are limited by the accuracy of the existing force fields. To overcome these challenges, we propose a systematic way to generate flexible, application-specific highly accurate force fields by training artificial neural networks. As a proof of concept, we study the adsorption of the amino acid alanine on graphene and gold (111) surfaces and demonstrate the force field generation methodology in detail. We find that a molecule-specific force field with Lennard-Jones type two-body terms incorporating the 3rd and 7th power of the inverse distances between the atoms of the adsorbent and the surfaces yields optimal results, which is surprisingly different from typical Lennard-Jones potentials used in traditional force fields. Furthermore, we present an efficient and easy-to-train machine learning model that incorporates system-specific three-body (or higher order) interactions that are required, for example, for gold surfaces. Our final machine learning-based force field yields a mean absolute error of less than 4.2 kJ/mol at a speed-up of ∼105 times compared to quantum mechanical calculation, which will have a significant impact on the study of adsorption in different research areas.

2.
Front Chem ; 9: 801589, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004618

RESUMO

Organic semiconductors (OSC) are key components in applications such as organic photovoltaics, organic sensors, transistors and organic light emitting diodes (OLED). OSC devices, especially OLEDs, often consist of multiple layers comprising one or more species of organic molecules. The unique properties of each molecular species and their interaction determine charge transport in OSCs-a key factor for device performance. The small charge carrier mobility of OSCs compared to inorganic semiconductors remains a major limitation of OSC device performance. Virtual design can support experimental R&D towards accelerated R&D of OSC compounds with improved charge transport. Here we benchmark a de novo multiscale workflow to compute the charge carrier mobility solely on the basis of the molecular structure: We generate virtual models of OSC thin films with atomistic resolution, compute the electronic structure of molecules in the thin films using a quantum embedding procedure and simulate charge transport with kinetic Monte-Carlo protocol. We show that for 15 common amorphous OSC the computed zero-field and field-dependent mobility are in good agreement with experimental data, proving this approach to be an effective virtual design tool for OSC materials and devices.

3.
Angew Chem Int Ed Engl ; 60(12): 6391-6394, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33300240

RESUMO

Binary transition metal fluorides are textbook examples combining complex electronic features with most fundamental molecular structures. High-valent nickel fluorides are among the strongest known fluorinating and oxidizing agents, but there is a lack of experimental structural and spectroscopic investigations on molecular NiF3 or NiF4 . Apart from their demanding synthesis, also their quantum-chemical description is difficult due to their open shell nature and low-lying excited electronic states. Distorted tetrahedral NiF4 (D2d ) and trigonal planar NiF3 (D3h ) molecules were produced by thermal evaporation and laser ablation of nickel atoms in a fluorine/noble gas mixture and spectroscopically identified by a joint matrix-isolation and quantum-chemical study. Their vibrational band positions provide detailed insights into their molecular structures.

4.
Nat Commun ; 11(1): 5630, 2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33159060

RESUMO

Intermolecular halogen bonds are ideally suited for designing new molecular assemblies because of their strong directionality and the possibility of tuning the interactions by using different types of halogens or molecular moieties. Due to these unique properties of the halogen bonds, numerous areas of application have recently been identified and are still emerging. Here, we present an approach for controlling the 2D self-assembly process of organic molecules by adsorption to reactive vs. inert metal surfaces. Therewith, the order of halogen bond strengths that is known from gas phase or liquids can be reversed. Our approach relies on adjusting the molecular charge distribution, i.e., the σ-hole, by molecule-substrate interactions. The polarizability of the halogen and the reactiveness of the metal substrate are serving as control parameters. Our results establish the surface as a control knob for tuning molecular assemblies by reversing the selectivity of bonding sites, which is interesting for future applications.

5.
J Phys Chem Lett ; 10(21): 6626-6633, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31596091

RESUMO

Photonic crystals are solids with regular structures having periodicities comparable to the wavelength of light. Here, we showcase the photomodulation of the refractive index of a crystalline material and present a quasi-one-dimensional photonic crystal with remote-controllable optical properties. The photonic material is composed of layers of TiO2 and films of a nanoporous metal-organic framework (MOF) with azobenzene side groups. While the rigid MOF lattice is unaffected, the optical density is reversibly modified by the light-induced trans-cis-azobenzene isomerization. Spectroscopic ellipsometry and precise DFT calculations show the optical-density change results from the different orbital localizations of the azobenzene isomers and their tremendously different oscillator strengths. The photomodulation of the MOF refractive index controls the optical properties of the quasi-one-dimensional photonic crystal with Bragg reflexes reversibly shifted by more than 4 nm. This study may path the way to photoswitchable photonic materials applied in advanced, tunable optical components and lens coatings and in light-based information processing.

6.
ACS Nano ; 13(1): 324-336, 2019 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-30550265

RESUMO

Selectivity is a key parameter for building customized organic nanostructures via bottom-up approaches. Therefore, strategies are needed that allow connecting molecular entities at a specific stage of the assembly process in a chemoselective manner. Studying the mechanisms of such reactions is the key to apply these transformations for the buildup of organic nanostructures on surfaces. Especially, the knowledge about the precise adsorption geometry of intermediates at different stages during the reaction process and their interactions with surface atoms or adatoms is of fundamental importance, since often catalytic processes are involved. We show the selective dehalogenation of 4-bromo-3″-iodo- p-terphenyl on the Cu(111) surface using bond imaging atomic force microscopy with CO-functionalized tips. The deiodination and debromination reactions are triggered either by heating or by locally applying voltage pulses with the tip. We observed a strong hierarchical behavior of the dehalogenation with respect to temperature and voltage. In connection with first-principles simulations we can determine the orientation and position of the pristine molecules as well as adsorbed mono/diradicals and the halogens. We find that the isolated radicals are chemisorbed to Cu(111) top sites, which are lifted by 16 pm ( meta-position) and 32 pm ( para-position) from the Cu surface plane. This leads to a strongly twisted and bent 3D adsorption structure. After heating, different types of dimers are observed whose molecules are either bound to surface atoms or connected via Cu adatoms. Such knowledge about the intermediate geometry and its interaction with the surface will open the way to rationally design syntheses on surfaces.

7.
Nat Commun ; 9(1): 1267, 2018 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593258

RESUMO

Transition metal complexes bearing terminal oxido ligands are quite common, yet group 11 terminal oxo complexes remain elusive. Here we show that excited coinage metal atoms M (M = Au, Ag, Cu) react with OF2 to form hypofluorites FOMF and group 11 oxygen metal fluorides OMF2, OAuF and OAgF. These compounds have been characterized by IR matrix-isolation spectroscopy in conjunction with state-of-the-art quantum-chemical calculations. The oxygen fluorides are formed by photolysis of the initially prepared hypofluorites. The linear molecules OAgF and OAuF have a 3Σ - ground state with a biradical character. Two unpaired electrons are located mainly at the oxygen ligand in antibonding O-M π* orbitals. For the 2B2 ground state of the OMIIIF2 compounds only an O-M single bond arises and a significant spin-density contribution was found at the oxygen atom as well.

8.
ACS Nano ; 11(4): 4183-4190, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28346826

RESUMO

The in-depth knowledge about on-surface reaction mechanisms is crucial for the tailor-made design of covalently bonded organic frameworks, for applications such as nanoelectronic or -optical devices. Latest developments in atomic force microscopy, which rely on functionalizing the tip with single CO molecules at low temperatures, allow to image molecular systems with submolecular resolution. Here, we are using this technique to study the complete reaction pathway of the on-surface Ullmann-type coupling between bromotriphenylene molecules on a Cu(111) surface. All steps of the Ullmann reaction, i.e., bromotriphenylenes, triphenylene radicals, organometallic intermediates, and bistriphenylenes, were imaged with submolecular resolution. Together with density functional theory calculations with dispersion correction, our study allows to address the long-standing question of how the organometallic intermediates are coordinated via Cu surface or adatoms.

9.
Dalton Trans ; 45(12): 5038-44, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26814579

RESUMO

Molecular manganese fluorides were studied using quantum-chemical calculations at DFT and CCSD(T) levels and experimentally by matrix-isolation techniques. They were prepared by co-deposition of IR-laser ablated elemental manganese or manganese trifluoride with F2 in an excess of Ne, Ar, or N2 or with neat F2 at 5-12 K. New IR bands in the Mn-F stretching region are detected and assigned to matrix-isolated molecular MnFx (x = 1-3).

10.
Chemistry ; 21(46): 16455-62, 2015 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-26428068

RESUMO

The use of neat fluorine in matrix isolation is reported, as well as the formation of polyfluoride monoanions under cryogenic conditions. Purification procedures and spectroscopic data of fluorine are described, and matrix shifts of selected molecules and impurities in solid fluorine are compared to those of common matrix gases (Ar, Kr, N2 , Ne). The reaction of neat fluorine and IR-laser ablated metal atoms to yield fluorides of chromium (CrF5 ), palladium (PdF2 ), gold (AuF5 ), and praseodymium (PrF4 ) has been investigated. The fluorides have been characterized in solid fluorine by IR spectroscopy at 5 K. Also the fluorination of Kr and the photo-dismutation of XeO4 have been studied by using IR spectroscopy in neat fluorine. Formation of the [F5 ](-) ion was obtained by IR-laser ablation of platinum in the presence of fluorine and proven in a Ne matrix at 5 K by two characteristic vibrational bands of [F5 ](-) at $\tilde \nu $=850.7 and 1805.0 cm(-1) and its photo-behavior.

11.
Angew Chem Int Ed Engl ; 54(28): 8279-83, 2015 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-26039540

RESUMO

Polyfluoride anions have been investigated by matrix-isolation spectroscopy and quantum-chemical methods. For the first time the higher polyfluoride anion [F5 ](-) has been observed under cryogenic conditions in neon matrices at 850 cm(-1) . In addition, a new band for the Cs(+) [F3 ](-) complex in neon is reported.

12.
Nature ; 514(7523): 475-7, 2014 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-25341786

RESUMO

One of the most important classifications in chemistry and within the periodic table is the concept of formal oxidation states. The preparation and characterization of compounds containing elements with unusual oxidation states is of great interest to chemists. The highest experimentally known formal oxidation state of any chemical element is at present VIII, although higher oxidation states have been postulated. Compounds with oxidation state VIII include several xenon compounds (for example XeO4 and XeO3F2) and the well-characterized species RuO4 and OsO4 (refs 2-4). Iridium, which has nine valence electrons, is predicted to have the greatest chance of being oxidized beyond the VIII oxidation state. In recent matrix-isolation experiments, the IrO4 molecule was characterized as an isolated molecule in rare-gas matrices. The valence electron configuration of iridium in IrO4 is 5d(1), with a formal oxidation state of VIII. Removal of the remaining d electron from IrO4 would lead to the iridium tetroxide cation ([IrO4](+)), which was recently predicted to be stable and in which iridium is in a formal oxidation state of IX. There has been some speculation about the formation of [IrO4](+) species, but these experimental observations have not been structurally confirmed. Here we report the formation of [IrO4](+) and its identification by infrared photodissociation spectroscopy. Quantum-chemical calculations were carried out at the highest level of theory that is available today, and predict that the iridium tetroxide cation, with a Td-symmetrical structure and a d(0) electron configuration, is the most stable of all possible [IrO4](+) isomers.

13.
Inorg Chem ; 53(11): 5820-9, 2014 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-24832569

RESUMO

The question of whether or not the chromium hexafluoride molecule has been synthesized and characterized has been widely discussed in the literature and cannot, in spite of many efforts, yet be answered beyond doubt. New matrix-isolation experiments can now show, together with state-of-the-art quantum-chemical calculations, that the compound previously isolated in inert gas matrixes, was CrF5 and not CrF6. New bands in the matrix IR spectra can be assigned to the Cr2F10 dimer, and furthermore evidence was found in the spectra for a photodissociation or reversible excitation of CrF5 under UV irradiation. However, even if CrF6 is not stable at ambient conditions, its formation under high fluorine pressures in autoclave reactions cannot be excluded completely.

15.
J Am Chem Soc ; 134(29): 11977-9, 2012 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-22775535

RESUMO

Very recently, a thermochemically stable Zn(III) complex has been predicted by Samanta and Jena (J. Am. Chem. Soc. 2012, 134, 8400-8403). In contrast to their conclusions we show here by quantum chemical calculations that (a) Zn(AuF(6))(3) is not a thermochemically feasible compound, and (b) even if it could be made, it would not represent a Zn(III) oxidation state by any valid definition.

17.
Inorg Chem ; 51(12): 6983-91, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22624577

RESUMO

The terminal oxo species OUF(2) and OThF(2) have been prepared via the spontaneous and specific OF(2) molecule reactions with laser ablated uranium and thorium atoms in solid argon and neon. These isolated molecules are characterized by one terminal M-O and two F-M-F (M = U or Th) stretching vibrational modes observed in matrix isolation infrared spectra, which are further supported by density functional frequency calculations and CASPT2 energy and structure calculations. Both molecules have pyramidal structures with singlet (Th) and triplet (U) ground states. The molecular orbitals and metal-oxygen bond lengths for the OUF(2) and OThF(2) molecules indicate triple bond character for the terminal oxo groups, which are also substantiated by NBO analysis at the B3LYP level and by CASPT2 molecular orbital calculations. Dative bonding involving O(2p) → Th(6d) and U(df) interactions is clearly involved in these oxoactinide difluoride molecules. Finally, the weak O-F bond in OF(2) as well as the strong U-O, U-F and Th-O, Th-F bonds make reaction to form the OUF(2) and OThF(2) molecules highly exothermic.


Assuntos
Flúor/química , Oxigênio/química , Teoria Quântica , Tório/química , Urânio/química , Espectrofotometria Infravermelho
19.
Inorg Chem ; 49(7): 3130-40, 2010 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-20187619

RESUMO

Single crystals of the new compounds Sc(3)Al(3)O(5)C(2) and ScAl(2)ONC were obtained by reacting Sc(2)O(3) and C in an Al-melt at 1550 degrees C. Their crystal structures continue the row of transition metal oxide carbides with an ordered distribution of anions and cations with ScAlOC as the first representative. In the structure of Sc(3)Al(3)O(5)C(2) (P6(3)/mmc, Z = 2, a = 3.2399(8) A, c = 31.501(11) A, 193 refl., 23 param., R(1)(F) = 0.024, wR(2)(I) = 0.058) the anions form a closest packing with five layers of oxygen separated by two layers of carbon atoms. Sc is placed in octahedral voids and Al in tetrahedral voids thus forming layers of AlOC(3) tetrahedra and ScC(6)- and ScO(6)-octahedra, respectively. Surprisingly the layers of ScO(6) octahedra are connected by an additional layer of undistorted trigonal bipyramids AlO(5). The structure of ScAl(2)ONC (space group R3m, Z = 3, a = 3.2135(8) A, c = 44.636(1) A, 187 refl., 21 param., R(1)(F) = 0.023, wR(2)(F(2)) = 0.043) can directly be derived from the binary nitrides AlN (wurtzite-type) and ScN (rocksalt-type). The anions form a closest packing with alternating double layers of C and O separated by an additional layer of N. Again, Al and Sc occupy tetrahedral and octahedral voids, respectively. All compositions were confirmed by energy dispersive X-ray spectroscopy (EDXS) measurements on single crystals. According to band structure calculations Sc(3)Al(3)O(5)C(2) is electron precise with a band gap of 0.3 eV. Calculations of charges and charge densities reveal that the mainly ionic bonding contains significant covalent contributions, too. As expected Sc and C show higher covalent shares than Al and O. The different coordinations of O, Al, and Sc are clearly represented in the corresponding p and d states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...