Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 4(1): 216, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603225

RESUMO

A marked 120 My gap in the fossil record of vampire squids separates the only extant species (Vampyroteuthis infernalis) from its Early Cretaceous, morphologically-similar ancestors. While the extant species possesses unique physiological adaptations to bathyal environments with low oxygen concentrations, Mesozoic vampyromorphs inhabited epicontinental shelves. However, the timing of their retreat towards bathyal and oxygen-depleted habitats is poorly documented. Here, we document a first record of a post-Mesozoic vampire squid from the Oligocene of the Central Paratethys represented by a vampyromorph gladius. We assign Necroteuthis hungarica to the family Vampyroteuthidae that links Mesozoic loligosepiids with Recent Vampyroteuthis. Micropalaeontological, palaeoecological, and geochemical analyses demonstrate that Necroteuthis hungarica inhabited bathyal environments with bottom-water anoxia and high primary productivity in salinity-stratified Central Paratethys basins. Vampire squids were thus adapted to bathyal, oxygen-depleted habitats at least since the Oligocene. We suggest that the Cretaceous and the early Cenozoic OMZs triggered their deep-sea specialization.


Assuntos
Aclimatação , Evolução Biológica , Decapodiformes/metabolismo , Ecossistema , Fósseis , Oxigênio/metabolismo , Animais , Decapodiformes/ultraestrutura , Fósseis/ultraestrutura , Hipóxia , Microscopia Eletrônica de Varredura , Oceanos e Mares , Espectroscopia de Infravermelho com Transformada de Fourier , Microtomografia por Raio-X
2.
Integr Zool ; 14(6): 561-575, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30811879

RESUMO

Fossil cephalopods are frequently encrusted by epibionts; however, determining whether encrustation occurred prior to or post-mortem to the host, and whether the final environment of deposition corresponds to the habitat of encrustation is complex. The present paper describes cirripede epibionts, their calcareous bases and their attachment scars on 6 post-mortem shells of Nautilus macromphalus, collected from deep water off New Caledonia. The cirripedes have left both cemented calcareous bases of Hexelasma and scars associated with bioerosion and discoloration produced by verrucomorph barnacles. Live cirripedes included a Metaverruca recta, with articulated opercular plates and organic tissue (on a shell that had been exposed on the sea floor for at least 150 years), and specimens of Hexelasma velutinum, one of which was partly attached to an internal surface of a shell. The disposition of verrucomorphs indicates that most Nautilus shells were colonized post-mortem rather than during a floating stage. However, as cirripedes are known to have colonized living Nautilus, some Hexelasma, preserved only as calcareous eroded bases, may represent specimens that settled on a living Nautilus. The degree of bioerosion and discoloration induced by verrucomorph barnacles varies according to the surface preservation of Nautilus shells, with deeper and discolored traces preserved on old and degraded shells. Traces made by verrucomorphs described here are ellipsoidal and a new ichnotaxon, Anellusichnus ellipticus, is proposed to accommodate them. Importantly, verrucomorphs and other cirripede taxa with membranous bases that were attached to pristine shells may not leave any substantial scars, and, thus, will be difficult to detect in the fossil record.


Assuntos
Exoesqueleto , Crustáceos/classificação , Nautilus , Animais , Crustáceos/fisiologia , Nova Caledônia , Oceano Pacífico
3.
Sci Rep ; 7(1): 4076, 2017 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-28642499

RESUMO

Alpheid snapping shrimps (Decapoda: Caridea: Alpheidae) constitute one of the model groups for inferences aimed at understanding the evolution of complex structural, behavioural, and ecological traits among benthic marine invertebrates. Despite being a super-diverse taxon with a broad geographical distribution, the alpheid fossil record is still poorly known. However, data presented herein show that the strongly calcified fingertips of alpheid snapping claws are not uncommon in the fossil record and should be considered a novel type of mesofossil. The Cenozoic remains analysed here represent a compelling structural match with extant species of Alpheus. Based on the presence of several distinct snapping claw-fingertip morphotypes, the major radiation of Alpheus lineages is estimated to have occurred as early as 18 mya. In addition, the oldest fossil record of alpheids in general can now be confirmed for the Late Oligocene (27-28 mya), thus providing a novel minimum age for the entire group as well as the first reliable calibration point for deep phylogenetic inferences.


Assuntos
Decápodes/anatomia & histologia , Fósseis , Distribuição Animal , Animais , Decápodes/química , Geografia , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA