Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 135(2): 691-5, 2013 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-23249218

RESUMO

Self-assembled monolayers of 1,3,5-tris(4'-biphenyl-4"-carbonitrile)benzene, a large functional trinitrile molecule, on the (111) surfaces of copper and silver under ultrahigh vacuum conditions were studied by scanning tunneling microscopy and low-energy electron diffraction. A densely packed hydrogen-bonded polymorph was equally observed on both surfaces. Additionally, deposition onto Cu(111) yielded a well-ordered metal-coordinated porous polymorph that coexisted with the hydrogen-bonded structure. The required coordination centers were supplied by the adatom gas of the Cu(111) surface. On Ag(111), however, the well-ordered metal-coordinated network was not observed. Differences between the adatom reactivities on copper and silver and the resulting bond strengths of the respective coordination bonds are held responsible for this substrate dependence. By utilizing ultralow deposition rates, we demonstrate that on Cu(111) the adatom kinetics plays a decisive role in the expression of intermolecular bonds and hence structure selection.

2.
Chem Commun (Camb) ; 47(45): 12355-7, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22011657

RESUMO

We report on covalent two-dimensional phenylene-boroxine hybrid-networks that were synthesized under ultra-high vacuum conditions from doubly functionalized monomers through thermally activated condensation prior to deposition and successive heterogeneously catalyzed radical addition on Ag(111). Structural properties were characterized in situ by high resolution Scanning-Tunneling-Microscopy (STM).

3.
J Am Chem Soc ; 133(20): 7909-15, 2011 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-21534586

RESUMO

Self-assembly and surface-mediated reactions of 1,3,5-tris(4-mercaptophenyl)benzene--a three-fold symmetric aromatic trithiol--are studied on Cu(111) by means of scanning tunneling microscopy (STM) under ultrahigh-vacuum (UHV) conditions. In order to reveal the nature of intermolecular bonds and to understand the specific role of the substrate for their formation, these studies were extended to Ag(111). Room-temperature deposition onto either substrate yields densely packed trigonal structures with similar appearance and lattice parameters. Yet, thermal annealing reveals distinct differences between both substrates: on Cu(111) moderate annealing temperatures (~150 °C) already drive the emergence of two different porous networks, whereas on Ag(111) higher annealing temperatures (up to ~300 °C) were required to induce structural changes. In the latter case only disordered structures with characteristic dimers were observed. These differences are rationalized by the contribution of the adatom gas on Cu(111) to the formation of metal-coordination bonds. Density functional theory (DFT) methods were applied to identify intermolecular bonds in both cases by means of their bond distances and geometries.

4.
Rev Sci Instrum ; 82(3): 033701, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21456745

RESUMO

We describe the setup, characteristics, and application of an in vacuo ion-sputtering and electron-beam annealing device for the postpreparation of scanning probes (e.g., scanning tunneling microscopy (STM) tips) under ultrahigh vacuum (UHV) conditions. The proposed device facilitates the straightforward implementation of a common two-step cleaning procedure, where the first step consists of ion-sputtering, while the second step heals out sputtering-induced defects by thermal annealing. In contrast to the standard way, no dedicated external ion-sputtering gun is required with the proposed device. The performance of the described device is demonstrated by SEM micrographs and energy dispersive x-ray characterization of electrochemically etched tungsten tips prior and after postprocessing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...