Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 27: 100477, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37635846

RESUMO

Background and Purpose: In online adaptive stereotactic body radiotherapy treatments, linear accelerator delivery accuracy is essential. Recently introduced double stack multileaf collimators (MLCs) have new facets in their calibration. We established a radiation-based leaf-individual calibration (LIMCA) method for double stack MLCs. Materials and Methods: MLC leaf positions were evaluated from four cardinal angles with test patterns at measurement positions throughout the radiation field on EBT3 radiochromic film for each single stack. The accuracy of the method and repeatability of the results were assessed. The effect of MLC positioning errors was characterized for a measured output factor curve and a clinical patient plan. Results: All positions in the motor step - position calibration file were optimized in the established LIMCA method. The resulting double stack mean accuracy for all angles was 0.2 ± 0.1 mm for X1 (left bank) and 0.2 ± 0.2 mm for X2 (right bank). The accuracy of the leaf position evaluation was 0.2 mm (95% confidence level). The MLC calibration remained stable over four months. Small MLC leaf position errors (e.g. 1.2 mm field size reduction) resulted in important dose errors (-5.8 %) for small quadratic fields of 0.83 × 0.83 cm2. Single stack position accuracy was essential for highly modulated treatment plans. Conclusions: LIMCA is a new double stack MLC calibration method that increases treatment accuracy from four angles and for all moving leaves.

2.
Clin Transl Radiat Oncol ; 39: 100567, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36935853

RESUMO

Purpose/Objective: To evaluate the potential of stereotactic magnetic resonance-guided online adaptive radiotherapy (SMART) to fulfill dose recommendations for stereotactic body radiotherapy (SBRT) of adrenal metastases and spare organs at risk (OAR). Materials and methods: In this subgroup analysis of a prospective registry trial, 22 patients with adrenal metastases were treated on a 0.35 T MR-Linac in 5-12 fractions with fraction doses of 4-10 Gy. Baseline plans were re-calculated to the anatomy of the day. These predicted plans were reoptimized to generate adapted plans. Baseline, predicted and adapted plans were compared with regard to PTV objectives, OAR constraints and published dose recommendations. Results: The cohort comprised patients with large GTV (median 36.0 cc) and PTV (median 66.6 cc) and predominantly left-sided metastases. 179 of 181 fractions (98.9 %) were adapted because of PTV and/or OAR violations. Predicted plans frequently violated PTV coverage (99.4 %) and adjacent OAR constraints (bowel: 32.9 %, stomach: 32.8 %, duodenum: 10.4 %, kidneys: 10.8 %). In the predicted plans, the volume exposed to the maximum dose was exceeded up to 16-fold in the duodenum and up to 96-fold in the spinal cord. Adapted plans significantly reduced OAR violations by 96.4 % for the bowel, 98.5 % for the stomach, 85.6 % for the duodenum and 83.3 % for the kidneys. Plan adaptation improved PTV coverage from 82.7 ± 8.1 % to 90.6 ± 4.9 % (p < 0.001). Furthermore, recently established target volume thresholds could easily be fulfilled with SMART. No toxicities > grade II occurred. Conclusion: SMART fulfills established GTV and PTV dose recommendations while simultaneously sparing organs at risk even in a challenging cohort.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...