Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Commun ; 6(2): fcae087, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585669

RESUMO

Genetic repeat expansions cause neuronal degeneration in amyotrophic lateral sclerosis as well as other neurodegenerative disorders such as spinocerebellar ataxia, Huntington's disease and Kennedy's disease. Repeat expansions in the same gene can cause multiple clinical phenotypes. We aimed to characterize repeat expansions in a Norwegian amyotrophic lateral sclerosis cohort. Norwegian amyotrophic lateral sclerosis patients (n = 414) and neurologically healthy controls adjusted for age and gender (n = 713) were investigated for repeat expansions in AR, ATXN1, ATXN2 and HTT using short read exome sequencing and the ExpansionHunter software. Five amyotrophic lateral sclerosis patients (1.2%) and two controls (0.3%) carried ≥36 repeats in HTT (P = 0.032), and seven amyotrophic lateral sclerosis patients (1.7%) and three controls (0.4%) carried ≥29 repeats in ATXN2 (P = 0.038). One male diagnosed with amyotrophic lateral sclerosis carried a pathogenic repeat expansion in AR, and his diagnosis was revised to Kennedy's disease. In ATXN1, 50 amyotrophic lateral sclerosis patients (12.1%) and 96 controls (13.5%) carried ≥33 repeats (P = 0.753). None of the patients with repeat expansions in ATXN2 or HTT had signs of Huntington's disease or spinocerebellar ataxia type 2, based on a re-evaluation of medical records. The diagnosis of amyotrophic lateral sclerosis was confirmed in all patients, with the exception of one patient who had primary lateral sclerosis. Our findings indicate that repeat expansions in HTT and ATXN2 are associated with increased likelihood of developing amyotrophic lateral sclerosis. Further studies are required to investigate the potential relationship between HTT repeat expansions and amyotrophic lateral sclerosis.

2.
Neuroepidemiology ; 56(4): 271-282, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35576897

RESUMO

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that affects motor neurons. In Europe, disease-causing genetic variants have been identified in 40-70% of familial ALS patients and approximately 5% of sporadic ALS patients. In Norway, the contribution of genetic variants to ALS has not yet been studied. In light of the potential development of personalized medicine, knowledge of the genetic causes of ALS in a population is becoming increasingly important. The present study provides clinical and genetic data on familial and sporadic ALS patients in a Norwegian population-based cohort. METHODS: Blood samples and clinical information from ALS patients were obtained at all 17 neurological departments throughout Norway during a 2-year period. Genetic analysis of the samples involved expansion analysis of C9orf72 and exome sequencing targeting 30 known ALS-linked genes. The variants were classified using genotype-phenotype correlations and bioinformatics tools. RESULTS: A total of 279 ALS patients were included in the study. Of these, 11.5% had one or several family members affected by ALS, whereas 88.5% had no known family history of ALS. A genetic cause of ALS was identified in 31 individuals (11.1%), among which 18 (58.1%) were familial and 13 (41.9%) were sporadic. The most common genetic cause was the C9orf72 expansion (6.8%), which was identified in 8 familial and 11 sporadic ALS patients. Pathogenic or likely pathogenic variants of SOD1 and TBK1 were identified in 10 familial and 2 sporadic cases. C9orf72 expansions dominated in patients from the Northern and Central regions, whereas SOD1 variants dominated in patients from the South-Eastern region. CONCLUSION: In the present study, we identified several pathogenic gene variants in both familial and sporadic ALS patients. Restricting genetic analysis to only familial cases would miss more than 40 percent of those with a disease-causing genetic variant, indicating the need for genetic analysis in sporadic cases as well.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/epidemiologia , Esclerose Lateral Amiotrófica/genética , Proteína C9orf72/genética , Humanos , Epidemiologia Molecular , Superóxido Dismutase-1/genética
3.
Arch Pharm (Weinheim) ; 340(7): 339-44, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17611943

RESUMO

The synthesis and in-vitro antimalarial activity of conformationally restrained bis(pivaloyloxymethyl) ester analogues of the natural product fosmidomycin is presented. In contrast to alpha-aryl-substituted analogues, conformationally restrained aromatic analogues exhibit only moderate in-vitro antimalarial activity against the chloroquine-sensitive strain 3D7 of Plasmodium falciparum. The most active derivative displays an IC(50) value of 47 microM.


Assuntos
Antimaláricos/farmacologia , Fosfomicina/análogos & derivados , Pró-Fármacos/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Ésteres , Fosfomicina/síntese química , Fosfomicina/química , Fosfomicina/farmacologia , Concentração Inibidora 50 , Conformação Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Pró-Fármacos/síntese química , Pró-Fármacos/química , Relação Estrutura-Atividade
4.
Eur J Med Chem ; 41(12): 1385-97, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17055117

RESUMO

The phosphonohydroxamic acid Fosmidomycin is a drug candidate for the treatment of Malaria, currently in phase II trials in combination with Clindamycin. In order to obtain compounds of higher lipophilicity, we recently synthesized alpha-phenyl substituted Fosmidomycin derivatives which display high antimalarial activity. We now report the synthesis and in vitro antimalarial activity of arylmethyl substituted bis(pivaloyloxymethyl) ester prodrugs of Fosmidomycin and its acetyl analogue FR900098. The 3,4-dichlorobenzyl substituted derivative of Fosmidomycin proved to be about twice as active as the respective Fosmidomycin prodrug, however, less active than the corresponding FR900098 prodrug. Electron donating substituents as well as voluminous substituents led to a significant reduction of activity.


Assuntos
Antimaláricos/química , Antimaláricos/farmacologia , Fosfomicina/análogos & derivados , Fosfomicina/síntese química , Fosfomicina/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas de Bombardeamento Rápido de Átomos
5.
Bioorg Med Chem ; 14(15): 5121-35, 2006 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-16679022

RESUMO

Fosmidomycin is a promising antimalarial drug candidate with a unique chemical structure and a novel mode of action. Chain substituted pivaloyloxymethyl ester derivatives of Fosmidomycin and its acetyl analogue FR900098 have been synthesized and their in vitro antimalarial activity versus the Chloroquine sensitive strain 3D7 of Plasmodium falciparum has been determined.


Assuntos
Antimaláricos/síntese química , Antimaláricos/farmacologia , Fosfomicina/análogos & derivados , Ácidos Pentanoicos/síntese química , Ácidos Pentanoicos/farmacologia , Animais , Antimaláricos/química , Relação Dose-Resposta a Droga , Fosfomicina/química , Fosfomicina/farmacologia , Estrutura Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/classificação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/crescimento & desenvolvimento , Pró-Fármacos/síntese química , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Estereoisomerismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...