Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Sci Technol ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36626664

RESUMO

Examining in situ processes in the soil rhizosphere requires spatial information on physical and chemical properties under undisturbed conditions. We developed a correlative imaging workflow for targeted sampling of roots in their three-dimensional (3D) context and assessed the imprint of roots on chemical properties of the root-soil contact zone at micrometer to millimeter scale. Maize (Zea mays) was grown in 15N-labeled soil columns and pulse-labeled with 13CO2 to visualize the spatial distribution of carbon inputs and nitrogen uptake together with the redistribution of other elements. Soil columns were scanned by X-ray computed tomography (X-ray CT) at low resolution (45 µm) to enable image-guided subsampling of specific root segments. Resin-embedded subsamples were then analyzed by X-ray CT at high resolution (10 µm) for their 3D structure and chemical gradients around roots using micro-X-ray fluorescence spectroscopy (µXRF), nanoscale secondary ion mass spectrometry (NanoSIMS), and laser-ablation isotope ratio mass spectrometry (LA-IRMS). Concentration gradients, particularly of calcium and sulfur, with different spatial extents could be identified by µXRF. NanoSIMS and LA-IRMS detected the release of 13C into soil up to a distance of 100 µm from the root surface, whereas 15N accumulated preferentially in the root cells. We conclude that combining targeted sampling of the soil-root system and correlative microscopy opens new avenues for unraveling rhizosphere processes in situ.

3.
Nat Commun ; 13(1): 2098, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35449155

RESUMO

Soil carbon sequestration arises from the interplay of carbon input and stabilization, which vary in space and time. Assessing the resulting microscale carbon distribution in an intact pore space, however, has so far eluded methodological accessibility. Here, we explore the role of soil moisture regimes in shaping microscale carbon gradients by a novel mapping protocol for particulate organic matter and carbon in the soil matrix based on a combination of Osmium staining, X-ray computed tomography, and machine learning. With three different soil types we show that the moisture regime governs C losses from particulate organic matter and the microscale carbon redistribution and stabilization patterns in the soil matrix. Carbon depletion around pores (aperture > 10 µm) occurs in a much larger soil volume (19-74%) than carbon enrichment around particulate organic matter (1%). Thus, interacting microscale processes shaped by the moisture regime are a decisive factor for overall soil carbon persistence.


Assuntos
Carbono , Solo , Material Particulado
4.
Plant Methods ; 17(1): 39, 2021 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832482

RESUMO

BACKGROUND: X-ray computed tomography is acknowledged as a powerful tool for the study of root system architecture of plants growing in soil. In this paper, we improved the original root segmentation algorithm "Rootine" and present its succeeding version "Rootine v.2". In addition to gray value information, Rootine algorithms are based on shape detection of cylindrical roots. Both algorithms are macros for the ImageJ software and are made freely available to the public. New features in Rootine v.2 are (i) a pot wall detection and removal step to avoid segmentation artefacts for roots growing along the pot wall, (ii) a calculation of the root average gray value based on a histogram analysis, (iii) an automatic calculation of thresholds for hysteresis thresholding of the tubeness image to reduce the number of parameters and (iv) a false negatives recovery based on shape criteria to increase root recovery. We compare the segmentation results of Rootine v.1 and Rootine v.2 with the results of root washing and subsequent analysis with WinRhizo. We use a benchmark dataset of maize roots (Zea mays L. cv. B73) grown in repacked soil for two scenarios with differing soil heterogeneity and image quality. RESULTS: We demonstrate that Rootine v.2 outperforms its preceding version in terms of root recovery and enables to match better the root diameter distribution data obtained with root washing. Despite a longer processing time, Rootine v.2 comprises less user-defined parameters and shows an overall greater usability. CONCLUSION: The proposed method facilitates higher root detection accuracy than its predecessor and has the potential for improving high-throughput root phenotyping procedures based on X-ray computed tomography data analysis.

5.
Sci Rep ; 9(1): 16236, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31700059

RESUMO

Contradictory evidence exists regarding whether and to which extend roots change soil structure in their vicinity. Here we attempt to reconcile disparate views allowing for the two-way interaction between soil structure and root traits, i.e. changes in soil structure due to plants and changes in root growth due to soil structure. Porosity gradients extending from the root/biopore surface into the bulk soil were investigated with X-ray µCT for undisturbed soil samples from a field chronosequence as well as for a laboratory experiment with Zea mays growing into three different bulk densities. An image analysis protocol was developed, which enabled a fast analysis of the large sample pool (n > 300) at a resolution of 19 µm. Lab experiment showed that growing roots only compact the surrounding soil if macroporosity is low and dominated by isolated pores. When roots can grow into a highly connected macropore system showing high connectivity the rhizosphere is more porous compared to the bulk soil. A compaction around roots/biopores in the field chronosequence was only observed in combination with high root/biopore length densities. We conclude that roots compact the rhizosphere only if the initial soil structure does not offer a sufficient volume of well-connected macropores.


Assuntos
Raízes de Plantas/metabolismo , Solo/química , Porosidade , Microtomografia por Raio-X
6.
Environ Sci Technol ; 53(2): 829-837, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30525511

RESUMO

The microenvironmental conditions in soil exert a major control on many ecosystem functions of soil. Their investigation in intact soil samples is impaired by methodological challenges in the joint investigation of structural heterogeneity that defines pathways for matter fluxes and biogeochemical heterogeneity that governs reaction patterns and microhabitats. Here we demonstrate how these challenges can be overcome with a novel protocol for correlative imaging based on image registration to combine three-dimensional microstructure analysis of X-ray tomography data with biogeochemical microscopic data of various modalities and scales (light microscopy, fluorescence microscopy, electron microscopy, secondary ion mass spectrometry). Correlative imaging of a microcosm study shows that the majority (75%) of bacteria are located in mesopores (<10 µm). Furthermore, they have a preference to forage near macropore surfaces and near fresh particulate organic matter. Ignoring the structural complexity coming from the third dimension is justified for metrics based on size and distances but leads to a substantial bias for metrics based on continuity. This versatile combination of imaging modalities with freely available software and protocols may open up completely new avenues for the investigation of many important biogeochemical and physical processes in structured soils.


Assuntos
Ecossistema , Solo , Microscopia Eletrônica , Microscopia de Fluorescência , Espectrometria de Massa de Íon Secundário
7.
Front Microbiol ; 9: 1929, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30210462

RESUMO

Over the last 60 years, soil microbiologists have accumulated a wealth of experimental data showing that the bulk, macroscopic parameters (e.g., granulometry, pH, soil organic matter, and biomass contents) commonly used to characterize soils provide insufficient information to describe quantitatively the activity of soil microorganisms and some of its outcomes, like the emission of greenhouse gasses. Clearly, new, more appropriate macroscopic parameters are needed, which reflect better the spatial heterogeneity of soils at the microscale (i.e., the pore scale) that is commensurate with the habitat of many microorganisms. For a long time, spectroscopic and microscopic tools were lacking to quantify processes at that scale, but major technological advances over the last 15 years have made suitable equipment available to researchers. In this context, the objective of the present article is to review progress achieved to date in the significant research program that has ensued. This program can be rationalized as a sequence of steps, namely the quantification and modeling of the physical-, (bio)chemical-, and microbiological properties of soils, the integration of these different perspectives into a unified theory, its upscaling to the macroscopic scale, and, eventually, the development of new approaches to measure macroscopic soil characteristics. At this stage, significant progress has been achieved on the physical front, and to a lesser extent on the (bio)chemical one as well, both in terms of experiments and modeling. With regard to the microbial aspects, although a lot of work has been devoted to the modeling of bacterial and fungal activity in soils at the pore scale, the appropriateness of model assumptions cannot be readily assessed because of the scarcity of relevant experimental data. For significant progress to be made, it is crucial to make sure that research on the microbial components of soil systems does not keep lagging behind the work on the physical and (bio)chemical characteristics. Concerning the subsequent steps in the program, very little integration of the various disciplinary perspectives has occurred so far, and, as a result, researchers have not yet been able to tackle the scaling up to the macroscopic level. Many challenges, some of them daunting, remain on the path ahead. Fortunately, a number of these challenges may be resolved by brand new measuring equipment that will become commercially available in the very near future.

8.
Front Plant Sci ; 9: 1084, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30087691

RESUMO

The rhizosphere, the fraction of soil altered by plant roots, is a dynamic domain that rapidly changes during plant growth. Traditional approaches to quantify root growth patterns are very limited in estimating this transient extent of the rhizosphere. In this paper we advocate the analysis of root growth patterns from the soil perspective. This change of perspective addresses more directly how certain root system architectures facilitate the exploration of soil. For the first time, we propose a parsimonious root distance model with only four parameters which is able to describe root growth patterns throughout all stages in the first 3 weeks of growth of Vicia faba measured with X-ray computed tomography. From these models, which are fitted to the frequency distribution of root distances in soil, it is possible to estimate the rhizosphere volume, i.e., the volume fraction of soil explored by roots, and adapt it to specific interaction distances for water uptake, rhizodeposition, etc. Through 3D time-lapse imaging and image registration it is possible to estimate root age dependent rhizosphere volumes, i.e., volumes specific for certain root age classes. These root distance models are a useful abstraction of complex root growth patterns that provide complementary information on root system architecture unaddressed by traditional root system analysis, which is helpful to constrain dynamic root growth models to achieve more realistic results.

9.
PLoS One ; 13(3): e0193669, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29579093

RESUMO

X-ray CT is a powerful technology to study root growth in soil in-situ. Root systems can be studied in its true 3D geometry over time. Hence, the same plant can be scanned multiple times during development. A downside is the potential of X-rays to interfere with biological processes and therefore plant growth. The aim of this study is to evaluate the influence of cumulative X-ray dose on Vicia faba and Hordeum vulgare during a growth period of 17 days. One control treatment without X-ray scanning was compared to two treatments being scanned every two and four days, respectively. Scanned treatments received a maximum cumulative dose of less than 8 Gy. Plant species differed in their susceptibility to X-ray dose. For Vicia faba, mean total root length was reduced significantly. Leave growth was reduced as well. Number and length of second order laterals was reduced significantly, as well as length of first order laterals. Hordeum vulgare showed no negative impact of X-ray dose on any of the root parameters. Large differences between the two species investigated were detected in respect to susceptibility to X-ray dose. Results indicate that for X-ray CT studies involving temporal resolution a control treatment without scanning is required.


Assuntos
Hordeum/crescimento & desenvolvimento , Hordeum/efeitos da radiação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Vicia faba/crescimento & desenvolvimento , Vicia faba/efeitos da radiação , Relação Dose-Resposta à Radiação , Tomografia Computadorizada por Raios X , Raios X/efeitos adversos
11.
Nature ; 554(7693): 423, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32094968
12.
Glob Chang Biol ; 24(4): 1637-1650, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29223134

RESUMO

Global change contributes to the retreat of glaciers at unprecedented rates. The deglaciation facilitates biogeochemical processes on glacial deposits with initiating soil formation as an important driver of evolving ecosystems. The underlying mechanisms of soil formation and the association of soil organic matter (SOM) with mineral particles remain unclear, although further insights are critical to understand carbon sequestration in soils. We investigated the microspatial arrangement of SOM coatings at intact soil microaggregate structures during various stages of ecosystem development from 15 to >700 years after deglaciation in the proglacial environment of the Damma glacier (Switzerland). The functionally important clay-sized fraction (<2 µm) was separated into two density fractions with different amounts of organo-mineral associations: light (1.6-2.2 g/cm3 ) and heavy (>2.2 g/cm3 ). To quantify how SOM extends across the surface of mineral particles (coverage) and whether SOM coatings are distributed in fragmented or connected patterns (connectivity), we developed an image analysis protocol based on nanoscale secondary ion mass spectrometry (NanoSIMS). We classified SOM and mineral areas depending on the 16 O- , 12 C- , and 12 C14 N- distributions. With increasing time after glacial retreat, the microspatial coverage and connectivity of SOM increased rapidly. The rapid soil formation led to a succession of patchy distributed to more connected SOM coatings on soil microaggregates. The maximum coverage of 55% at >700 years suggests direct evidence for SOM sequestration being decoupled from the mineral surface, as it was not completely masked by SOM and retained its functionality as an ion exchange site. The chemical composition of SOM coatings showed a rapid change toward a higher CN:C ratio already at 75 years after glacial retreat, which was associated with microbial succession patterns reflecting high N assimilation. Our results demonstrate that rapid SOM sequestration drives the microspatial succession of SOM coatings in soils, a process that can stabilize SOM for the long term.


Assuntos
Carbono/química , Camada de Gelo , Solo/química , Ecossistema , Minerais/química , Suíça , Fatores de Tempo
13.
Phys Rev E ; 94(4-1): 043113, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27841482

RESUMO

In multiphase flow in porous media the consistent pore to Darcy scale description of two-fluid flow processes has been a long-standing challenge. Immiscible displacement processes occur at the scale of individual pores. However, the larger scale behavior is described by phenomenological relationships such as relative permeability, which typically uses only fluid saturation as a state variable. As a consequence pore scale properties such as contact angle cannot be directly related to Darcy scale flow parameters. Advanced imaging and computational technologies are closing the gap between the pore and Darcy scale, supporting the development of new theory. We utilize fast x-ray microtomography to observe pore-scale two-fluid configurations during immiscible flow and initialize lattice Boltzmann simulations that demonstrate that the mobilization of disconnected nonwetting phase clusters can account for a significant fraction of the total flux. We show that fluid topology can undergo substantial changes during flow at constant saturation, which is one of the underlying causes of hysteretic behavior. Traditional assumptions about fluid configurations are therefore an oversimplification. Our results suggest that the role of fluid connectivity cannot be ignored for multiphase flow. On the Darcy scale, fluid topology and phase connectivity are accounted for by interfacial area and Euler characteristic as parameters that are missing from our current models.

14.
PLoS One ; 11(7): e0159948, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27453995

RESUMO

Matter turnover in soil is tightly linked to soil structure which governs the heterogeneous distribution of habitats, reaction sites and pathways in soil. Thereby, the temporal dynamics of soil structure alteration is deemed to be important for essential ecosystem functions of soil but very little is known about it. A major reason for this knowledge gap is the lack of methods to study soil structure turnover directly at microscopic scales. Here we devise a conceptual approach and an image processing workflow to study soil structure turnover by labeling some initial state of soil structure with small garnet particles and tracking their fate with X-ray microtomography. The particles adhere to aggregate boundaries at the beginning of the experiment but gradually change their position relative to the nearest pore as structure formation progresses and pores are destructed or newly formed. A new metric based on the contact distances between particles and pores is proposed that allows for a direct quantification of soil structure turnover rates. The methodology is tested for a case study about soil compaction of a silty loam soil during stepwise increase of bulk density (ρ = {1.1, 1.3, 1.5} g/cm3). We demonstrate that the analysis of mean contact distances provides genuinely new insights about changing diffusion pathways that cannot be inferred neither from conventional pore space attributes (porosity, mean pore size, pore connectivity) nor from deformation analysis with digital image correlation. This structure labeling approach to quantify soil structure turnover provides a direct analogy to stable isotope labeling for the analysis of matter turnover and can be readily combined with each other.


Assuntos
Solo/química , Microtomografia por Raio-X , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...