Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Neuromodulation ; 26(7): 1319-1327, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37802585

RESUMO

OBJECTIVES: This study aims to describe the state of literature regarding the use of intraoperative neurophysiological monitoring (IONM) during spinal cord stimulator surgery. MATERIALS AND METHODS: A systematic review of the use of IONM during spinal cord stimulation (SCS) surgery was performed using the following three data bases: PubMed, Ovid MEDLINE, and Embase. Research techniques included systematic research following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol by Cochrane, and backward searching. Qualitative analysis of included articles was performed using the methodologic index for nonrandomized studies assessment tool. Direction of effect, consistency across studies, and cost-effectiveness were narratively synthesized. RESULTS: A total of 15 records were identified through data base searching. All records used IONM methods under general anesthesia for guidance of epidural lead placement. IONM techniques used for determining lateralization in the found articles were compound muscle action potentials (CMAPs) (n = 8), somatosensory evoked potentials (SSEPs) (n = 3) or both (n = 4). Motor evoked potentials were used in three trials for neuroprotection purposes. Two studies were comparative, and 12 were noncomparative. CONCLUSIONS: We found a good body of level II evidence that using IONM during SCS surgery is a valid alternative to awake surgery and may even be superior regarding pain management, cost-effectiveness, and postoperative neurologic deficits. In direct comparison, the found evidence suggested using CMAP provided more consistently favorable results than using SSEP for midline placement of epidural leads under general anesthesia. Selection of IONM modality should be made on the basis of pathophysiology of disease, individual IONM experience, and the individual patient.


Assuntos
Neoplasias Encefálicas , Monitorização Neurofisiológica Intraoperatória , Estimulação da Medula Espinal , Humanos , Monitorização Neurofisiológica Intraoperatória/métodos , Vigília , Procedimentos Neurocirúrgicos/métodos , Potencial Evocado Motor/fisiologia , Estudos Retrospectivos
2.
Mov Disord Clin Pract ; 10(3): 434-439, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36949800

RESUMO

Background: Directional deep brain stimulation (DBS) allows for steering of the stimulation field, but extensive and time-consuming testing of all segmented contacts is necessary to identify the possible benefit of steering. It is therefore important to determine under which circumstances directional current steering is advantageous. Methods: Fifty two Parkinson's disease patients implanted in the STN with a directional DBS system underwent a standardized monopolar programming session 5 to 9 months after implantation. Individual contacts were tested for a potential advantage of directional stimulation. Results were used to build a prediction model for the selection of ring levels that would benefit from directional stimulation. Results: On average, there was no significant difference in therapeutic window between ring-level contact and best directional contact. However, according to our standardized protocol, 35% of the contacts and 66% of patients had a larger therapeutic window under directional stimulation compared to ring-mode. The segmented contacts warranting directional current steering could be predicted with a sensitivity of 79% and a specificity of 57%. Conclusion: To reduce time required for DBS programming, we recommend additional directional contact testing initially only on ring-level contacts with a therapeutic window of less than 2.0 mA.

3.
Neuromodulation ; 26(2): 348-355, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35088739

RESUMO

OBJECTIVES: Subthalamic nucleus (STN) deep brain stimulation (DBS) programming in patients with Parkinson disease (PD) may be challenging, especially when using segmented leads. In this study, we integrated a previously validated probabilistic STN sweet spot into a commercially available software to evaluate its predictive value for clinically effective DBS programming. MATERIALS AND METHODS: A total of 14 patients with PD undergoing bilateral STN DBS with segmented leads were included. A nonlinear co-registration of a previously defined probabilistic sweet spot onto the manually segmented STN was performed together with lead reconstruction and tractography of the corticospinal tract (CST) in each patient. Contacts were ranked (level and direction), and corresponding effect and side-effect thresholds were predicted based on the overlap of the volume of activated tissue (VTA) with the sweet spot and CST. Image-based findings were correlated with postoperative clinical testing results during monopolar contact review and chronic stimulation parameter settings used after 12 months. RESULTS: Image-based contact prediction showed high interrater reliability (Cohen kappa 0.851-0.91). Image-based and clinical ranking of the most efficient ring level and direction of stimulation were matched in 72% (95% CI 57.0-83.3) and 65% (95% CI 44.9-81.2), respectively, across the whole cohort. The mean difference between the predicted and clinically observed effect thresholds was 0.79 ± 0.69 mA (p = 0.72). The median difference between the predicted and clinically observed side-effect thresholds was -0.5 mA (p < 0.001, Wilcoxon paired signed rank test). CONCLUSIONS: Integration of a probabilistic STN functional sweet spot into a surgical programming software shows a promising capability to predict the best level and directional contact(s) as well as stimulation settings in DBS for PD and could be used to optimize programming with segmented lead technology. This integrated image-based programming approach still needs to be evaluated on a bigger data set and in a future prospective multicenter cohort.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Reprodutibilidade dos Testes , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/terapia , Software
4.
Neuromodulation ; 26(1): 147-156, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35599160

RESUMO

OBJECTIVE: We aimed to demonstrate the feasibility of using motor evoked responses to intraoperative double-train stimulation to guide lead placement and matching of intraoperative contacts with postoperative electrode programming in spinal cord stimulation for pain performed under general anesthesia. MATERIALS AND METHODS: The study included a series of 20 consecutive patients with refractory pain operated on under general anesthesia. Either percutaneous or paddle leads were implanted and positioned according to the intraoperative mapping results. Neurophysiologic mapping was performed with a double-train stimulation paradigm (intertrain interval of 60 milliseconds, three to five cathodal pulses with 0.5-millisecond pulse duration, and within-train interstimulus intervals of 2-4 milliseconds). The sites where dorsal column responses of the targeted dermatomes were detected were considered optimal for lead placement (intraoperative best contacts). Following spinal cord stimulator (SCS) lead placement, blinded postoperative programming of electrode contacts was matched with the intraoperative best contacts and the pain-paresthesia overlap for the trial phase. A binominal test was used as a statistical method; pre- and postoperative numeric rating scale (NRS) after three months was obtained. RESULTS: A total of 15 patients underwent spinal cord stimulation trial for intractable pain. Of these, ten patients (66%) had a successful trial and received permanent implants; one patient had a successful trial but was never intended to be implanted because of her poor health condition; four patients (26%) had an unsuccessful trial, leading to trial electrode explantation; and five patients had already had an implant with percutaneous leads and therefore underwent electrode revision, of whom four patients received paddle leads. In 18 of the 20 operated patients (90%), we found a match between the best intraoperative contacts and the postoperatively programmed contacts (significantly better than chance, p = 8.2 × 10-15). In 90% of the patients, a pain-paresthesia overlap of 100% was found. In the remaining two patients (10%), the postoperatively best programmed contacts were one contact away from the intraoperative neurophysiologic best contact. A mean preoperative NRS score of 8.2 (variance) and a mean follow-up NRS score after three months of 3.6 (variance) were obtained for all patients with implants. CONCLUSION: In this proof-of-concept study, we were able to demonstrate that SCS lead placement using a double-train stimulation paradigm performed under general anesthesia is a safe and feasible technique, offering reliable prediction of contacts for postoperative programming and excellent pain-paresthesia coverage.


Assuntos
Dor Intratável , Estimulação da Medula Espinal , Feminino , Humanos , Eletrodos , Eletrodos Implantados , Parestesia , Medula Espinal/cirurgia , Medula Espinal/fisiologia , Estimulação da Medula Espinal/métodos , Estudos de Viabilidade
5.
Neuromodulation ; 25(8): 1227-1239, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35382977

RESUMO

OBJECTIVES: Cerebral vasospasm is a severe and potentially lethal complication in patients with subarachnoid hemorrhage (SAH). Its pathogenesis is still not completely understood. The efficacy of current treatments, such as triple-H therapy or calcium channel blockers, is unsatisfactory, and a new therapy model would therefore be valuable. Electrical stimulation may have a considerable influence on cerebrovascular innervation. This systematic review gives an overview of the studies that have applied electrical stimulation in models of cerebral vasospasm. MATERIALS AND METHODS: We performed a systematic review of the literature, searching PubMed and Ovid Embase with the keywords "electric stimulation," "cerebral vasospasm," "subarachnoid hemorrhage," "sympathetic," and "parasympathetic." Additional papers were identified from the reference lists of the articles identified in the literature search. RESULTS: Increased cerebral blood flow (CBF) is a widely observed effect of spinal cord stimulation and sphenopalatine ganglion stimulation in models of physiological conditions or experimental cerebral vasospasm. Most studies were conducted in animals, 15 under physiological conditions and 11 in animals with SAH. Eight studies in humans were identified that examined the stimulation effect on CBF under physiological conditions. Only two studies looked at patients after SAH: one applied spinal cord stimulation (SCS) and the other transcutaneous electrical neurostimulation. Different mechanisms leading to stimulation-induced CBF increase that were discussed included "reversible functional sympathectomy," activation of brainstem vasomotor centers, involvement of central ascending pathways, release of neurohumoral factors, and interaction with sympathetic, parasympathetic, and trigeminal innervation. The results indicate that electrical stimulation is a promising procedure for prevention and treatment of cerebral vasospasm. CONCLUSION: Electrical stimulation, especially SCS and sphenopalatine ganglion stimulation, is a promising adjunct for existing therapies for vasospasm after SAH. Further experiments and prospective clinical studies are needed to establish its potential usefulness as a therapy or prevention option.


Assuntos
Gânglios Parassimpáticos , Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Animais , Vasoespasmo Intracraniano/etiologia , Vasoespasmo Intracraniano/terapia , Hemorragia Subaracnóidea/complicações , Hemorragia Subaracnóidea/terapia , Estudos Prospectivos , Estimulação Elétrica , Gânglios Parassimpáticos/patologia
6.
NPJ Parkinsons Dis ; 7(1): 77, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489472

RESUMO

Although deep brain stimulation (DBS) of the globus pallidus internus (GPi) and the subthalamic nucleus (STN) has become an established treatment for Parkinson's disease (PD), a recent meta-analysis of outcomes is lacking. To address this gap, we performed a meta-analysis of bilateral STN- and GPi-DBS studies published from 1990-08/2019. Studies with ≥10 subjects reporting Unified Parkinson's Disease Rating Scale (UPDRS) III motor scores at baseline and 6-12 months follow-up were included. Several outcome variables were analyzed and adverse events (AE) were summarized. 39 STN studies (2035 subjects) and 5 GPi studies (292 subjects) were eligible. UPDRS-II score after surgery in the stimulation-ON/medication-OFF state compared to preoperative medication-OFF state improved by 47% with STN-DBS and 18.5% with GPi-DBS. UPDRS-III score improved by 50.5% with STN-DBS and 29.8% with GPi-DBS. STN-DBS improved dyskinesia by 64%, daily OFF time by 69.1%, and quality of life measured by PDQ-39 by 22.2%, while Levodopa Equivalent Daily Dose (LEDD) was reduced by 50.0%. For GPi-DBS information regarding dyskinesia, OFF time, PDQ-39 and LEDD was insufficient for further analysis. Correlation analysis showed that preoperative L-dopa responsiveness was highly predictive of the STN-DBS motor outcome across all studies. Most common surgery-related AE were infection (5.1%) and intracranial hemorrhage (3.1%). Despite a series of technological advances, outcomes of modern surgery are still comparable with those of the early days of DBS. Recent changes in target selection with a preference of GPi in elderly patients with cognitive deficits and more psychiatric comorbidities require more published data for validation.

7.
Acta Neurochir (Wien) ; 163(7): 1957-1964, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33538882

RESUMO

BACKGROUND: Stereotactic biopsies for brainstem lesions are frequently performed to yield an accurate diagnosis and help guide subsequent management. In this study, we summarize our experience with different stereotactic approaches to brainstem lesions of different locations and discuss possible implications for safety and diagnostic yield. METHODS: We retrospectively analyzed 23 adult patients who underwent a stereotactic biopsy for brainstem lesions between October 2011 and December 2019. Depending on the location supra- or infratentorial, trajectories were planned. We assessed the postoperative complications during the hospital stay as well as the diagnostic yield. RESULTS: A supratentorial transfrontal approach was used in 16 (70%) cases, predominantly for lesions in the midbrain, upper pons, and medulla oblongata. An infratentorial, transcerebellar-transpeduncular approach was used in 7 (30%) cases mainly for lesions within the lower pons. All biopsies were confirmed to represent pathological tissue and a definitive diagnosis was achieved in 21 cases (91%). Three patients (13%) had transient weakness in the contralateral part of the body in the immediate postoperative period, which improved spontaneously. There was no permanent morbidity or mortality in this series of patients. CONCLUSION: Lesions of various locations within the brainstem can be successfully targeted via either a supratentorial transfrontal or an infratentorial transcerebellar transpeduncular approach. Our high diagnostic yield of over 90% and the low rate of complications underlines the diagnostic importance of this procedure in order to guide the medical management of these patients.


Assuntos
Neoplasias Encefálicas , Tronco Encefálico , Técnicas Estereotáxicas , Adulto , Idoso , Idoso de 80 Anos ou mais , Biópsia , Tronco Encefálico/cirurgia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
8.
Acta Neurochir (Wien) ; 163(7): 1965-1968, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33047205

RESUMO

BACKGROUND: Open and stereotactic transfrontal or transcerebellar approaches have been used to biopsy brainstem lesions. METHOD: In this report, a stereotactic posterior and midline approach to the distal medulla oblongata under microscopic view is described. The potential advantages and limitations are discussed, especially bilateral damage of the X nerve nuclei. CONCLUSION: This approach should be considered for biopsy of distal and posterior lesions. We strongly recommend the use of direct microscopic view to identify the medullary vessels, confirm the midline entry point, and avoid potential shift of the medulla. Further experience is needed to confirm safety and success rate of this approach.


Assuntos
Neoplasias Encefálicas , Bulbo , Técnicas Estereotáxicas , Biópsia , Humanos , Bulbo/cirurgia
9.
J Neurosurg ; 131(3): 820-827, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30497206

RESUMO

OBJECTIVE: Deep brain stimulation (DBS) of the posterior subthalamic area (PSA) is an alternative to thalamic DBS for the treatment of essential tremor (ET). The dentato-rubro-thalamic tract (DRTT) has recently been proposed as the anatomical substrate underlying effective stimulation. For clinical purposes, depiction of the DRTT mainly depends on diffusion tensor imaging (DTI)-based tractography, which has some drawbacks. The objective of this study was to present an accurate targeting strategy for DBS of the PSA based on anatomical landmarks visible on MRI and to evaluate clinical effectiveness. METHODS: The authors performed a retrospective cohort study of a prospective series of 11 ET patients undergoing bilateral DBS of the PSA. The subthalamic nucleus and red nucleus served as anatomical landmarks to define the target point within the adjacent PSA on 3-T T2-weighted MRI. Stimulating contact (SC) positions with reference to the midcommissural point were analyzed and projected onto the stereotactic atlas of Morel. Postoperative outcome assessment after 6 and 12 months was based on change in Tremor Rating Scale (TRS) scores. RESULTS: Actual target position corresponded to the intended target based on anatomical landmarks depicted on MRI. The total TRS score was reduced (improved) from 47.2 ± 15.7 to 21.3 ± 10.7 (p < 0.001). No severe complication occurred. The mean SC position projected onto the PSA at the margin of the cerebellothalamic fascicle and the zona incerta. CONCLUSIONS: Targeting of the PSA based on anatomical landmarks representable on MRI is reliable and leads to accurate lead placement as well as good long-term clinical outcome.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Núcleo Subtalâmico , Adulto , Idoso , Idoso de 80 Anos ou mais , Imagem de Tensor de Difusão , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...