Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
medRxiv ; 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38343792

RESUMO

There is active debate regarding how GABAergic function changes during seizure initiation and propagation, and whether interneuronal activity drives or impedes the pathophysiology. Here, we track cell-type specific firing during spontaneous human seizures to identify neocortical mechanisms of inhibitory failure. Fast-spiking interneuron activity was maximal over 1 second before equivalent excitatory increases, and showed transitions to out-of-phase firing prior to local tissue becoming incorporated into the seizure-driving territory. Using computational modeling, we linked this observation to transient saturation block as a precursor to seizure invasion, as supported by multiple lines of evidence in the patient data. We propose that transient blocking of inhibitory firing due to selective fast-spiking interneuron saturation-resulting from intense excitatory synaptic drive-is a novel mechanism that contributes to inhibitory failure, allowing seizure propagation.

2.
J Neurosci ; 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35906069

RESUMO

During human seizures organized waves of voltage activity rapidly sweep across the cortex. Two contradictory theories describe the source of these fast traveling waves: either a slowly advancing narrow region of multiunit activity (an ictal wavefront) or a fixed cortical location. Limited observations and different analyses prevent resolution of these incompatible theories. Here we address this disagreement by combining the methods and microelectrode array recordings (N=11 patients, 2 females, N=31 seizures) from previous human studies to analyze the traveling wave source. We find - inconsistent with both existing theories - a transient relationship between the ictal wavefront and traveling waves, and multiple stable directions of traveling waves in many seizures. Using a computational model that combines elements of both existing theories, we show that interactions between an ictal wavefront and fixed source reproduce the traveling wave dynamics observed in vivo We conclude that combining both existing theories can generate the diversity of ictal traveling waves.Significance StatementThe source of voltage discharges that propagate across cortex during human seizures remains unknown. Two candidate theories exist, each proposing a different discharge source. Support for each theory consists of observations from a small number of human subject recordings, analyzed with separately developed methods. How the different, limited data and different analysis methods impact the evidence for each theory is unclear. To resolve these differences, we combine the unique, human microelectrode array recordings collected separately for each theory and analyze these combined data with a unified approach. We show that neither existing theory adequately describes the data. We then propose a new theory that unifies existing proposals and successfully reproduces the voltage discharge dynamics observed in vivo.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...