Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PNAS Nexus ; 3(2): pgae016, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38725525

RESUMO

Despite theoretical benefits of collaborative robots, disappointing outcomes are well documented by clinical studies, spanning rehabilitation, prostheses, and surgery. Cognitive load theory provides a possible explanation for why humans in the real world are not realizing the benefits of collaborative robots: high cognitive loads may be impeding human performance. Measuring cognitive availability using an electrocardiogram, we ask 25 participants to complete a virtual-reality task alongside an invisible agent that determines optimal performance by iteratively updating the Bellman equation. Three robots assist by providing environmental information relevant to task performance. By enabling the robots to act more autonomously-managing more of their own behavior with fewer instructions from the human-here we show that robots can augment participants' cognitive availability and decision-making. The way in which robots describe and achieve their objective can improve the human's cognitive ability to reason about the task and contribute to human-robot collaboration outcomes. Augmenting human cognition provides a path to improve the efficacy of collaborative robots. By demonstrating how robots can improve human cognition, this work paves the way for improving the cognitive capabilities of first responders, manufacturing workers, surgeons, and other future users of collaborative autonomy systems.

2.
Clin Biomech (Bristol, Avon) ; 72: 202-210, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31991286

RESUMO

BACKGROUND: During gait, the human ankle both bends with ease and provides push-off forces that facilitate forward motion. The ankle is crucial for support, stabilization, and adapting to different slopes and terrains. Individuals with lower limb amputation require an ankle-foot prosthesis for basic mobility. METHODS: Inspired by the role of the ankle-foot in an able-bodied gait, the 3D printed Compliant and Articulating Prosthetic Ankle (CAPA) foot was designed. It consists of four articulating components connected by torsion springs and produces forces that are dependent on the ankle angle. Using the Computer Assisted Rehabilitation Environment, able-bodied individuals walked wearing a prosthetic simulator with the Solid Ankle Cushioned Heel foot, Renegade® AT, and multiple versions of the CAPA. These versions test compliant vs. stiff, small vs. large rocker radius, and pretension vs. none. We hypothesized that the CAPA would have larger ankle range of motion, push-off forces, and braking forces. FINDINGS: Compared to existing prostheses, the novel prosthesis exhibits greater and significantly different ankle range of motion and sagittal plane ground reaction forces than existing prostheses during gait. Nine out of ten individuals prefer the novel prosthesis to the existing prostheses, and there is a statistically significant difference in difficulty level ratings. INTERPRETATION: By providing a personalizable and passive alternative to existing designs, the CAPA could improve the quality of life for the growing number of individuals living with limb loss in the United States and around the world.


Assuntos
Tornozelo , Membros Artificiais , , Fenômenos Mecânicos , Desenho de Prótese , Adulto , Tornozelo/fisiologia , Fenômenos Biomecânicos , Feminino , Pé/fisiologia , Marcha , Humanos , Masculino , Qualidade de Vida
3.
IEEE Int Conf Rehabil Robot ; 2017: 1160-1164, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28813978

RESUMO

This case study compares a transfemoral amputee's gait while using the existing Ossur Total Knee 2000 and our novel 3D printed anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee is 3D printed out of a carbon-fiber and nylon composite that has a gear-mesh coupling with a hard-stop weight-actuated locking mechanism aided by a cross-linked four-bar spring mechanism. This design can be scaled using anatomical dimensions of a human femur and tibia to have a unique fit for each user. The transfemoral amputee who was tested is high functioning and walked on the Computer Assisted Rehabilitation Environment (CAREN) at a self-selected pace. The motion capture and force data that was collected showed that there were distinct differences in the gait dynamics. The data was used to perform the Combined Gait Asymmetry Metric (CGAM), where the scores revealed that the overall asymmetry of the gait on the Ossur Total Knee was more asymmetric than the anatomically scalable transfemoral prosthetic knee. The anatomically scalable transfemoral prosthetic knee had higher peak knee flexion that caused a large step time asymmetry. This made walking on the anatomically scalable transfemoral prosthetic knee more strenuous due to the compensatory movements in adapting to the different dynamics. This can be overcome by tuning the cross-linked spring mechanism to emulate the dynamics of the subject better. The subject stated that the knee would be good for daily use and has the potential to be adapted as a running knee.


Assuntos
Amputados/reabilitação , Membros Artificiais , Desenho Assistido por Computador , Prótese do Joelho , Impressão Tridimensional , Adulto , Feminino , Humanos , Joelho/fisiologia , Desenho de Prótese , Amplitude de Movimento Articular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA