Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Cachexia Sarcopenia Muscle ; 10(3): 643-661, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30938481

RESUMO

BACKGROUND: Muscle wasting and weakness in Duchenne muscular dystrophy (DMD) causes severe locomotor limitations and early death due in part to respiratory muscle failure. Given that current clinical practice focuses on treating secondary complications in this genetic disease, there is a clear need to identify additional contributions in the aetiology of this myopathy for knowledge-guided therapy development. Here, we address the unresolved question of whether the complex impairments observed in DMD are linked to elevated mitochondrial H2 O2 emission in conjunction with impaired oxidative phosphorylation. This study performed a systematic evaluation of the nature and degree of mitochondrial-derived H2 O2 emission and mitochondrial oxidative dysfunction in a mouse model of DMD by designing in vitro bioenergetic assessments that attempt to mimic in vivo conditions known to be critical for the regulation of mitochondrial bioenergetics. METHODS: Mitochondrial bioenergetics were compared with functional and histopathological indices of myopathy early in DMD (4 weeks) in D2.B10-DMDmdx /2J mice (D2.mdx)-a model that demonstrates severe muscle weakness. Adenosine diphosphate's (ADP's) central effect of attenuating H2 O2 emission while stimulating respiration was compared under two models of mitochondrial-cytoplasmic phosphate exchange (creatine independent and dependent) in muscles that stained positive for membrane damage (diaphragm, quadriceps, and white gastrocnemius). RESULTS: Pathway-specific analyses revealed that Complex I-supported maximal H2 O2 emission was elevated concurrent with a reduced ability of ADP to attenuate emission during respiration in all three muscles (mH2 O2 : +17 to +197% in D2.mdx vs. wild type). This was associated with an impaired ability of ADP to stimulate respiration at sub-maximal and maximal kinetics (-17 to -72% in D2.mdx vs. wild type), as well as a loss of creatine-dependent mitochondrial phosphate shuttling in diaphragm and quadriceps. These changes largely occurred independent of mitochondrial density or abundance of respiratory chain complexes, except for quadriceps. This muscle was also the only one exhibiting decreased calcium retention capacity, which indicates increased sensitivity to calcium-induced permeability transition pore opening. Increased H2 O2 emission was accompanied by a compensatory increase in total glutathione, while oxidative stress markers were unchanged. Mitochondrial bioenergetic dysfunctions were associated with induction of mitochondrial-linked caspase 9, necrosis, and markers of atrophy in some muscles as well as reduced hindlimb torque and reduced respiratory muscle function. CONCLUSIONS: These results provide evidence that Complex I dysfunction and loss of central respiratory control by ADP and creatine cause elevated oxidant generation during impaired oxidative phosphorylation. These dysfunctions may contribute to early stage disease pathophysiology and support the growing notion that mitochondria are a potential therapeutic target in this disease.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/patologia , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Modelos Animais de Doenças , Metabolismo Energético , Humanos , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/citologia , Distrofia Muscular de Duchenne/genética , Oxirredução , Fosforilação Oxidativa , Estresse Oxidativo
3.
Cell Death Differ ; 23(7): 1140-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26742431

RESUMO

Mitophagy is critical for cell homeostasis. Externalization of the inner mitochondrial membrane phospholipid, cardiolipin (CL), to the surface of the outer mitochondrial membrane (OMM) was identified as a mitophageal signal recognized by the microtubule-associated protein 1 light chain 3. However, the CL-translocating machinery remains unknown. Here we demonstrate that a hexameric intermembrane space protein, NDPK-D (or NM23-H4), binds CL and facilitates its redistribution to the OMM. We found that mitophagy induced by a protonophoric uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), caused externalization of CL to the surface of mitochondria in murine lung epithelial MLE-12 cells and human cervical adenocarcinoma HeLa cells. RNAi knockdown of endogenous NDPK-D decreased CCCP-induced CL externalization and mitochondrial degradation. A R90D NDPK-D mutant that does not bind CL was inactive in promoting mitophagy. Similarly, rotenone and 6-hydroxydopamine triggered mitophagy in SH-SY5Y cells was also suppressed by knocking down of NDPK-D. In situ proximity ligation assay (PLA) showed that mitophagy-inducing CL-transfer activity of NDPK-D is closely associated with the dynamin-like GTPase OPA1, implicating fission-fusion dynamics in mitophagy regulation.


Assuntos
Cardiolipinas/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Mitofagia , Nucleosídeo Difosfato Quinase D/metabolismo , Animais , Autofagia/efeitos dos fármacos , Carbonil Cianeto m-Clorofenil Hidrazona/toxicidade , Cardiolipinas/análise , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Células HeLa , Humanos , Lisossomos/metabolismo , Lisossomos/patologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Mitocôndrias/patologia , Mitofagia/efeitos dos fármacos , Mutagênese Sítio-Dirigida , Nucleosídeo Difosfato Quinase D/antagonistas & inibidores , Nucleosídeo Difosfato Quinase D/genética , Oxidopamina/farmacologia , Ligação Proteica , Interferência de RNA , Rotenona/farmacologia
4.
Acta Physiol (Oxf) ; 213(1): 84-106, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24666671

RESUMO

To meet high cellular demands, the energy metabolism of cardiac muscles is organized by precise and coordinated functioning of intracellular energetic units (ICEUs). ICEUs represent structural and functional modules integrating multiple fluxes at sites of ATP generation in mitochondria and ATP utilization by myofibrillar, sarcoplasmic reticulum and sarcolemma ion-pump ATPases. The role of ICEUs is to enhance the efficiency of vectorial intracellular energy transfer and fine tuning of oxidative ATP synthesis maintaining stable metabolite levels to adjust to intracellular energy needs through the dynamic system of compartmentalized phosphoryl transfer networks. One of the key elements in regulation of energy flux distribution and feedback communication is the selective permeability of mitochondrial outer membrane (MOM) which represents a bottleneck in adenine nucleotide and other energy metabolite transfer and microcompartmentalization. Based on the experimental and theoretical (mathematical modelling) arguments, we describe regulation of mitochondrial ATP synthesis within ICEUs allowing heart workload to be linearly correlated with oxygen consumption ensuring conditions of metabolic stability, signal communication and synchronization. Particular attention was paid to the structure-function relationship in the development of ICEU, and the role of mitochondria interaction with cytoskeletal proteins, like tubulin, in the regulation of MOM permeability in response to energy metabolic signals providing regulation of mitochondrial respiration. Emphasis was given to the importance of creatine metabolism for the cardiac energy homoeostasis.


Assuntos
Respiração Celular/fisiologia , Metabolismo Energético/fisiologia , Coração/fisiologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Humanos , Consumo de Oxigênio/fisiologia
5.
J Neurochem ; 95(1): 33-45, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16045451

RESUMO

Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder, characterized by a prominent loss of GABA-ergic medium-sized spiny neurons in the caudate putamen. There is evidence that impaired energy metabolism contributes to neuronal death in HD. Creatine is an endogenous substrate for creatine kinases and thereby supports cellular ATP levels. This study investigated the effects of creatine supplementation (5 mm) on cell survival and neuronal differentiation in striatal cultures. Chronic creatine treatment resulted in significant increased densities of GABA-immunoreactive (-ir) neurons, although total neuronal cell number and general viability were not affected. Similar effects were seen after short-term treatment, suggesting that creatine acted as a differentiation factor. Inhibitors of transcription or translation did not abolish the creatine-mediated effects, nor did omission of extracellular calcium, whereas inhibition of mitogen-activated protein kinase and phosphatidylinositol-3-kinase significantly attenuated the creatine induced increase in GABA-ir cell densities. Creatine exhibited significant neuroprotection against toxicity instigated either by glucose- and serum deprivation or addition of 3-nitropropionic acid. In sum, the neuroprotective properties in combination with promotion of neuronal differentiation suggest that creatine has potential as a therapeutic drug in the treatment of neurodegenerative diseases, like HD.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Corpo Estriado/citologia , Corpo Estriado/metabolismo , Creatina/farmacologia , Neurônios/citologia , Neurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Creatina/administração & dosagem , Creatina Quinase/metabolismo , Meios de Cultura Livres de Soro/farmacologia , Relação Dose-Resposta a Droga , Esquema de Medicação , Glucose/deficiência , Isoenzimas/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Neurotoxinas/farmacologia , Nitrocompostos , Fosfatidilinositol 3-Quinases/metabolismo , Propionatos/farmacologia , Ratos , Ratos Wistar , Células-Tronco/citologia , Células-Tronco/metabolismo , Distribuição Tecidual
6.
Neuroscience ; 133(3): 701-13, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15890457

RESUMO

Parkinson's disease is a disabling neurodegenerative disorder of unknown etiology characterized by a predominant and progressive loss of dopaminergic neurons in the substantia nigra. Recent findings suggest that impaired energy metabolism plays an important role in the pathogenesis of this disorder. The endogenously occurring guanidino compound creatine is a substrate for mitochondrial and cytosolic creatine kinases. Creatine supplementation improves the function of the creatine kinase/phosphocreatine system by increasing cellular creatine and phosphocreatine levels and the rate of ATP resynthesis. In addition, mitochondrial creatine kinase together with high cytoplasmic creatine levels inhibit mitochondrial permeability transition, a major step in early apoptosis. In the present study, we analyzed the effects of externally added creatine on the survival and morphology of dopaminergic neurons and also addressed its neuroprotective properties in primary cultures of E14 rat ventral mesencephalon. Chronic administration of creatine [5 mM] for 7 days significantly increased survival (by 1.32-fold) and soma size (by 1.12-fold) of dopaminergic neurons, while having no effect on other investigated morphological parameters. Most importantly, concurrent creatine exerted significant neuroprotection for dopaminergic neurons against neurotoxic insults induced by serum and glucose deprivation (P < 0.01), 1-methyl-4-phenyl pyridinium ion (MPP+) [15 microM] and 6-hydroxydopamine (6-OHDA) [90 microM] exposure (P < 0.01). In addition, creatine treatment significantly protected dopaminergic cells facing MPP+-induced deterioration of neuronal morphology including overall process length/neuron (by 60%), number of branching points/neuron (by 80%) and area of influence per individual neuron (by 60%). Less pronounced effects on overall process length/neuron and number of branching points/neuron were also found after 6-OHDA exposure (P < 0.05) and serum/glucose deprivation (P < 0.05). In conclusion, our findings identify creatine as a rather potent natural survival- and neuroprotective factor for developing nigral dopaminergic neurons, which is of relevance for therapeutic approaches in Parkinson's disease and for the improvement of cell replacement strategies.


Assuntos
Creatina/farmacologia , Dopamina/fisiologia , Mesencéfalo/citologia , Neurônios/citologia , Neurônios/efeitos dos fármacos , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Creatina Quinase/metabolismo , Creatina Quinase Forma BB , Creatina Quinase Mitocondrial , Creatinina/metabolismo , Interações Medicamentosas , Feminino , Isoenzimas/metabolismo , Neurônios/metabolismo , Oxidopamina/farmacologia , Gravidez , Ratos , Ratos Sprague-Dawley , Simpatolíticos/farmacologia , Tirosina 3-Mono-Oxigenase/metabolismo
7.
Mitochondrion ; 4(1): 49-57, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16120374

RESUMO

We tested the effect of an anti-oxidant mixture on respiration in isolated rat brain mitochondria. Mitochondria were isolated in mannitol/sucrose/EGTA/BSA +/- SCAVEGR anti-oxidants (SOD, catalase, vitamin E, vitamin E acetate, and glutathione reduced). TBARS were reduced by greater than 40% with SCAVEGR. Respiration driven by ADP showed a two-fold higher V(max) and a 15% higher respiratory control ratio when mitochondria were prepared with SCAVEGR. SCAVEGR also stabilized the octameric state of mitochondrial creatine kinase and thus improved creatine-stimulated respiration. These results suggest that significant improvements in brain mitochondrial function are obtained by isolation in the presence of an anti-oxidants mixture.

8.
Biochem Soc Trans ; 31(Pt 1): 169-74, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12546678

RESUMO

One of the most important duties of a cell is energy homoeostasis. Several kinases, including AMP-activated protein kinase (AMPK), creatine kinase and adenylate kinase, are involved in the immediate response to stress, resulting in energy depletion. Here, we present our view of events preceding the downstream processes mediated by AMPK and leading to reduced energy expenditure and increased energy production. Unfortunately, AMPK is very poorly defined at the molecular level. Thus a procedure for production of AMPK in milligram amounts is presented which will greatly facilitate the functional and structural characterization of this protein kinase.


Assuntos
Complexos Multienzimáticos/genética , Complexos Multienzimáticos/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Quinases Ativadas por AMP , Adenilato Quinase/metabolismo , Sítio Alostérico , Animais , Creatina Quinase/metabolismo , Regulação Enzimológica da Expressão Gênica , Vetores Genéticos , Humanos , Modelos Biológicos , Complexos Multienzimáticos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais
9.
Int J Cancer ; 94(4): 513-9, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11745437

RESUMO

Ubiquitous mitochondrial creatine kinase (uMtCK), a key enzyme in energy metabolism, was identified by differential display PCR to be specifically overexpressed in L1236, the first cell line of definite Hodgkin origin. RT-PCR confirmed overexpression of uMtCK in the L1236 cell line and the absence of cytosolic B-CK, which is co-expressed with MtCK physiologically. Cyclocreatine (cCr), whose phosphorylated form is a very poor substrate for CK, inhibited proliferation of the L1236 cell line nearly entirely. This inhibition by cCr was partially reversed by competition with creatine, which by itself had no effect on proliferation of the L1236 cell line. Although these results support a role of CK activity in the inhibitory action of cCr, it remains open whether the cCr effect is due to its inhibition of CK-linked energy metabolism or if alternative mechanisms have to be considered. Because the anti-proliferative effect of cCr was not due to induction of apoptosis, in contrast to most other anticancer agents, treatment with the creatine analogue cCr may represent an advantageous therapeutic approach for cells resistant to programmed cell death.


Assuntos
Antineoplásicos/farmacologia , Apoptose , Creatina Quinase/biossíntese , Creatinina/análogos & derivados , Creatinina/farmacologia , Doença de Hodgkin/metabolismo , Mitocôndrias/enzimologia , Western Blotting , Morte Celular , Divisão Celular , Creatina/farmacologia , Creatina Quinase/metabolismo , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica , Humanos , Concentração de Íons de Hidrogênio , Immunoblotting , Fosforilação , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Distribuição Tecidual , Células Tumorais Cultivadas
10.
J Biol Chem ; 276(51): 48027-30, 2001 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-11602586

RESUMO

Mitochondrial creatine kinase (MtCK) co-localizes with mitochondrial porin (voltage-dependent anion channel) and adenine nucleotide translocator in mitochondrial contact sites. A specific, direct protein-protein interaction between MtCK and mitochondrial porin was demonstrated using surface plasmon resonance spectroscopy. This interaction was independent of the immobilized binding partner (porin reconstituted in liposomes or MtCK) or the analyzed isoform (chicken sarcomeric MtCK or human ubiquitous MtCK, human recombinant porin, or purified bovine porin). Increased ionic strength reduced the binding of MtCK to porin, suggesting predominantly ionic interactions. By contrast, micromolar concentrations of Ca(2+) increased the amount of bound MtCK, indicating a physiological regulation of complex formation. No interaction of MtCK with reconstituted adenine nucleotide translocator was detectable in our experimental setup. The relevance of these findings for structure and function of mitochondrial contact sites is discussed.


Assuntos
Cálcio/metabolismo , Creatina Quinase/metabolismo , Mitocôndrias/enzimologia , Porinas/metabolismo , Animais , Bovinos , Galinhas , Humanos , Microscopia Eletrônica , Ligação Proteica , Ressonância de Plasmônio de Superfície
11.
Muscle Nerve ; 24(5): 682-8, 2001 May.
Artigo em Inglês | MEDLINE | ID: mdl-11317279

RESUMO

Total creatine or phosphocreatine, or both, are reduced in the skeletal muscle of patients with inflammatory myopathy, mitochondrial myopathy, and muscular dystrophy/congenital myopathy. We used Western blotting techniques to measure skeletal muscle creatine transporter protein and sarcomeric mitochondrial creatine kinase (mtCK) protein content in patients with inflammatory myopathy (N = 8), mitochondrial myopathy (N = 5), muscular dystrophy (N = 7), and congenital myopathy (N = 3), as compared to a control group without a neuromuscular diagnosis (N = 8). Creatine transporter protein content was lower for all groups compared to control subjects (P < 0.05; P < 0.01 for congenital myopathy). Mitochondrial CK (mtCK) was lower for inflammatory myopathy (P < 0.05), higher for mitochondrial myopathy (P < 0.05), not different for muscular dystrophy, and markedly lower for the congenital myopathy group (P < 0.01), compared to control subjects. Together, these data suggest that the reduction in total creatine or phosphocreatine in patients with certain myopathies is correlated with creatine transporter and not mtCK protein content. This further supports the belief that creatine monohydrate supplementation may benefit patients with low muscle creatine stores, although the reduction in creatine transporter protein may have implications for dosing.


Assuntos
Proteínas de Transporte/metabolismo , Creatina Quinase/metabolismo , Creatina/metabolismo , Proteínas de Membrana Transportadoras , Doenças Musculares/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Doenças Musculares/enzimologia , Miofibrilas/enzimologia , Miofibrilas/metabolismo , Fosfatos/metabolismo , Inclusão do Tecido
12.
J Biol Chem ; 275(35): 27094-9, 2000 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-10829032

RESUMO

Creatine kinase catalyzes the reversible transphosphorylation of creatine by MgATP. From the sequence homology and the molecular structure of creatine kinase isoenzymes, we have identified several highly conserved residues with a potential function in the active site: a negatively charged cluster (Glu(226), Glu(227), Asp(228)) and a serine (Ser(280)). Mutant proteins E226Q, E226L, E227Q, E227L, D228N, and S280A/S280D of human sarcomeric mitochondrial creatine kinase were generated by in vitro mutagenesis, expressed in Escherichia coli, and purified to homogeneity. Their overall structural integrity was confirmed by CD spectroscopy and gel filtration chromatography. The enzymatic activity of all proteins mutated in the negatively charged cluster was extremely low (0.002-0.4% of wild type) and showed apparent Michaelis constants (K(m)) similar to wild type, suggesting that most of the residual activity may be attributed to wild-type revertants. Mutations of Ser(280) led to higher residual activities and altered K(m) values; S280A showed an increase of K(m) for phosphocreatine (65-fold), creatine (6-fold), and ATP (6-fold); S280D showed a decrease of K(m) for creatine (6-fold). These results, together with the transition state structure of the homologous arginine kinase (Zhou, G., Somasundaram, T., Blanc, E., Parthasarathy G., Ellington, W. R., and Chapman, M. S. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 8449-8454), strongly suggest a critical role of Glu(226), Glu(227), and Asp(228) in substrate binding and catalysis and point to Glu(227) as a catalytic base.


Assuntos
Creatina Quinase/metabolismo , Sítios de Ligação , Dicroísmo Circular , Creatina Quinase/química , Creatina Quinase/genética , Primers do DNA , Humanos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Espectrofotometria Ultravioleta , Especificidade por Substrato
13.
J Biol Chem ; 275(23): 17314-20, 2000 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-10748055

RESUMO

Octamer stability and membrane binding of mitochondrial creatine kinase (MtCK) are important for proper functioning of the enzyme and were suggested as targets for regulatory mechanisms. A quantitative analysis of these properties, using fluorescence spectroscopy, gel filtration, and surface plasmon resonance, revealed substantial differences between the two types of MtCK isoenzymes, sarcomeric (sMtCK) and ubiquitous (uMtCK). As compared with human and chicken sMtCK, human uMtCK showed a 23-34 times slower octamer dissociation rate, a reduced reoctamerization rate and a superior octamer stability as deduced from the octamer/dimer ratios at thermodynamic equilibrium. Octamer stability of sMtCK increased with temperature up to 30 degrees C, indicating a substantial contribution of hydrophobic interactions, while it decreased in the case of uMtCK, indicating the presence of additional polar dimer/dimer interactions. These conclusions are consistent with the recently solved x-ray structure of the human uMtCK (Eder, M., Fritz-Wolf, K., Kabsch, W., Wallimann, T., and Schlattner, U. (2000) Proteins 39, 216-225). When binding to 16% cardiolipin membranes, sMtCK showed slightly faster on-rates and higher affinities than uMtCK. However, human uMtCK was able to recruit the highest number of binding sites on the vesicle surface. The observed divergence of ubiquitous and sarcomeric MtCK is discussed with respect to their molecular structures and the possible physiological implications.


Assuntos
Creatina Quinase/química , Creatina Quinase/metabolismo , Lipossomos/metabolismo , Mitocôndrias/enzimologia , Animais , Cardiolipinas/metabolismo , Galinhas , Cromatografia em Gel , Dimerização , Estabilidade Enzimática , Humanos , Isoenzimas , Cinética , Substâncias Macromoleculares , Fosfatidilcolinas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Sarcômeros/enzimologia , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Termodinâmica
14.
Proteins ; 39(3): 216-25, 2000 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-10737943

RESUMO

Creatine kinase (CK), catalyzing the reversible trans-phosphorylation between ATP and creatine, plays a key role in the energy metabolism of cells with high and fluctuating energy requirements. We have solved the X-ray structure of octameric human ubiquitous mitochondrial CK (uMtCK) at 2.7 A resolution, representing the first human CK structure. The structure is very similar to the previously determined structure of sarcomeric mitochondrial CK (sMtCK). The cuboidal octamer has 422 point group symmetry with four dimers arranged along the fourfold axis and a central channel of approximately 20 A diameter, which extends through the whole octamer. Structural differences with respect to sMtCK are found in isoform-specific regions important for octamer formation and membrane binding. Octameric uMtCK is stabilized by numerous additional polar interactions between the N-termini of neighboring dimers, which extend into the central channel and form clamp-like structures, and by a pair of salt bridges in the hydrophobic interaction patch. The five C-terminal residues of uMtCK, carrying positive charges likely to be involved in phospholipid-binding, are poorly defined by electron density, indicating a more flexible region than the corresponding one in sMtCK. The structural differences between uMtCK and sMtCK are consistent with biochemical studies on octamer stability and membrane binding of the two isoforms.


Assuntos
Creatina Quinase/química , Mitocôndrias/enzimologia , Modelos Moleculares , Cristalografia por Raios X , Dimerização , Humanos , Dobramento de Proteína , Estrutura Quaternária de Proteína
15.
Biol Chem ; 381(11): 1063-70, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11154064

RESUMO

The mitochondrial isoenzymes of creatine kinase (MtCK), ubiquitous uMtCK and sarcomeric sMtCK, are key enzymes of oxidative cellular energy metabolism and play an important role in human health and disease. Very little is known about uMtCK in general, or about sMtCK of human origin. Here we have heterologously expressed and purified both human MtCK isoenzymes to perform a biochemical, kinetic and structural characterization. Both isoenzymes occurred as octamers, which can dissociate into dimers. Distinct Stokes' radii of uMtCK and sMtCK in solution were indicative for conformational differences between these equally sized proteins. Both human MtCKs formed 2D-crystals on cardiolipin layers, which revealed further subtle differences in octamer structure and stability. Octameric human sMtCK displayed p4 symmetry with lattice parameters of 145 A, indicating a 'flattening' of the octamer on the phospholipid layer. pH optima and enzyme kinetic constants of the two human isoenzymes were significantly different. A pronounced substrate binding synergism (Kd > Km) was observed for all substrates, but was most pronounced in the forward reaction (PCr production) of uMtCK and led to a significantly lower Km for creatine (1.01 mM) and ATP (0.11 mM) as compared to sMtCK (creatine, 7.31 mM; ATP, 0.68 mM).


Assuntos
Creatina Quinase/metabolismo , Isoenzimas/metabolismo , Creatina Quinase/genética , Creatina Quinase/isolamento & purificação , Creatina Quinase/ultraestrutura , Creatina Quinase Mitocondrial , Expressão Gênica , Humanos , Isoenzimas/genética , Isoenzimas/isolamento & purificação , Isoenzimas/ultraestrutura , Cinética , Microscopia Eletrônica/métodos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo
16.
Biol Cell ; 92(8-9): 629-37, 2000 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-11374441

RESUMO

Yeast vacuoles are highly dynamic and flexible organelles. In a previous paper, we have shown that subtle, often unrecognised amino acid limitations lead to much lower final cell densities in cultures of different commonly used auxotrophic Saccharomyces cerevisiae strains (Cakar et al., Biotechnol. Lett. 21 (1999) 611). Here, we demonstrate for two of these strains, CEN.PK 113.6B and CBS7752, that such subtle leucine limitations also affect the number and morphology of vacuoles, and that these changes are correlated with the cell cycle in batch cultures in a similar way as is known from synchronized cultures. Morphological aspects were studied by electron microscopy, using advanced high pressure freezing/freeze-substitution techniques for sample preparation that so far have been barely successful in yeast. Cells of leucine-limited cultures had single, large vacuoles with a hexagonal tonoplast pattern and were partially arrested in G1 phase. To relieve leucine-limitation, additional leucine was supplied extracellularly via the medium or intracellularly via enhanced leucine biosynthesis due to plasmid-based expression of a leucine marker gene. Such cultures reached more than two-fold higher final optical densities in stationary phase. Cells in later growth phase were characterized by fragmented vacuoles lacking any tonoplast pattern and by a smaller proportion of cells in G1 phase. These drastic effects of subtle leucine limitation on cell physiology, vacuolar morphology and cell cycle distribution present a note of caution for morphological and cell cycle studies in yeast.


Assuntos
Ciclo Celular/fisiologia , Leucina/deficiência , Saccharomyces cerevisiae/ultraestrutura , Vacúolos/ultraestrutura , Animais , Diferenciação Celular/genética , Divisão Celular/fisiologia , Tamanho Celular/genética , Meios de Cultura/farmacologia , Substituição ao Congelamento , Genes Reporter/fisiologia , Vetores Genéticos/fisiologia , Leucina/biossíntese , Leucina/genética , Microscopia Eletrônica de Varredura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transfecção , Vacúolos/metabolismo
17.
J Bioenerg Biomembr ; 32(1): 123-31, 2000 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11768757

RESUMO

We have evaluated surface plasmon resonance with avidin-biotin immobilized liposomes to characterize membrane binding of ubiquitous mitochondrial creatine kinase (uMtCK). While the sarcomeric sMtCK isoform is well known to bind to negatively charged phospholipids, especially cardiolipin, this report provides the first experimental evidence on the membrane interaction of an uMtCK isoform. Qualitative measurements showed that liposomes containing 16% (w/w) cardiolipin bind octameric as well as dimeric human uMtCK and also cytochrome c, but not bovine serum albumin. Quantitative parameters could be derived only for the membrane interaction of octameric human uMtCK using an improved analytical approach. Association and dissociation kinetics of octameric uMtCK fit well to a model for heterogeneous interaction suggesting two independent binding sites. Rate constants of the two sites differed by one order of magnitude, while their affinity constants were both about 80-100 nM. The data obtained demonstrate that surface plasmon resonance with immobilized liposomes is a suitable approach to characterize the binding of peripheral proteins to a lipid bilayer and that this method yields consistent quantitative binding parameters.


Assuntos
Creatina Quinase/metabolismo , Isoenzimas/metabolismo , Mitocôndrias/enzimologia , Sítios de Ligação , Creatina Quinase/química , Creatina Quinase Mitocondrial , Humanos , Isoenzimas/química , Cinética , Ressonância de Plasmônio de Superfície
18.
Protein Sci ; 8(11): 2258-69, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10595529

RESUMO

Excitable cells and tissues like muscle or brain show a highly fluctuating consumption of ATP, which is efficiently regenerated from a large pool of phosphocreatine by the enzyme creatine kinase (CK). The enzyme exists in tissue--as well as compartment-specific isoforms. Numerous pathologies are related to the CK system: CK is found to be overexpressed in a wide range of solid tumors, whereas functional impairment of CK leads to a deterioration in energy metabolism, which is phenotypic for many neurodegenerative and age-related diseases. The crystal structure of chicken cytosolic brain-type creatine kinase (BB-CK) has been solved to 1.41 A resolution by molecular replacement. It represents the most accurately determined structure in the family of guanidino kinases. Except for the N-terminal region (2-12), the structures of both monomers in the biological dimer are very similar and closely resemble those of the other known structures in the family. Specific Ca2+-mediated interactions, found between two dimers in the asymmetric unit, result in structurally independent heterodimers differing in their N-terminal conformation and secondary structure. The high-resolution structure of BB-CK presented in this work will assist in designing new experiments to reveal the molecular basis of the multiple isoform-specific properties of CK, especially regarding different subcellular locations and functional interactions with other proteins. The rather similar fold shared by all known guanidino kinase structures suggests a model for the transition state complex of BB-CK analogous to the one of arginine kinase (AK). Accordingly, we have modeled a putative conformation of CK in the transition state that requires a rigid body movement of the entire N-terminal domain by rms 4 A from the structure without substrates.


Assuntos
Encéfalo/enzimologia , Creatina Quinase/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Galinhas , Creatina Quinase/metabolismo , Cristalografia por Raios X , Citosol/enzimologia , Dimerização , Isoenzimas , Mitocôndrias/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Estrutura Secundária de Proteína , Reprodutibilidade dos Testes
19.
J Mol Cell Cardiol ; 31(4): 857-66, 1999 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-10329213

RESUMO

Mitochondrial creatine kinase (Mi-CK) occurs in dimeric and octameric forms, both in vitro and in vivo. The Mi-CK octamer, however, is the predominant form in vivo and is important for various functions of the protein. In the present study we show for the first time a significant decrease of the octamer/dimer ratio in vivo, related to ischemia-induced damage, and a similar decrease of octamer stability in vitro, induced by peroxynitrite (PN) radicals. We used animal models to induce ischemia in two different ways: acute ischemia in intact heart (Langendorff perfusion) and chronic ischemia in vivo (LAD-infarction). In both models, impairment of heart function and mitochondrial energy metabolism was associated with a significant decrease of Mi-CK octamer/dimer ratios and of Mi-CK activities. These findings, together with recent data showing that the formation of PN is induced in ischemia and that Mi-CK is a prime target of peroxynitrite (PN)-induced damage, suggest that oxygen radicals generated during ischemia and reoxygenation could be an important factor for the decreased octamer stability. To test this hypothesis, we studied the effect of PN on pure Mi-CK in vitro, both on dissociation of octamers and reassociation of dimers. At 1 m m PN 66% of Mi-CK octamers dissociated into dimers, whereas octamerization of PN-modified dimers was already completely inhibited at 100 microm PN. Our data indicate that PN-induced damage could be responsible for the octamer-dimer transition of Mi-CK in ischemia. A loss of Mi-CK octamers would impair the channeling of high energy phosphate out of mitochondria and hence heart function in general.


Assuntos
Creatina Quinase/química , Mitocôndrias Cardíacas/enzimologia , Isquemia Miocárdica/enzimologia , Animais , Dimerização , Técnicas In Vitro , Masculino , Infarto do Miocárdio/enzimologia , Nitratos/farmacologia , Perfusão , Conformação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...