Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Diabetes Metab Res Rev ; 40(5): e3834, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38961642

RESUMO

AIMS: We recently reported that genetic variability in the TKT gene encoding transketolase, a key enzyme in the pentose phosphate pathway, is associated with measures of diabetic sensorimotor polyneuropathy (DSPN) in recent-onset diabetes. Here, we aimed to substantiate these findings in a population-based KORA F4 study. MATERIALS AND METHODS: In this cross-sectional study, we assessed seven single nucleotide polymorphisms (SNPs) in the transketolase gene in 952 participants from the KORA F4 study with normal glucose tolerance (NGT; n = 394), prediabetes (n = 411), and type 2 diabetes (n = 147). DSPN was defined by the examination part of the Michigan Neuropathy Screening Instrument (MNSI) using the original MNSI > 2 cut-off and two alternative versions extended by touch/pressure perception (TPP) (MNSI > 3) and by TPP plus cold perception (MNSI > 4). RESULTS: After adjustment for sex, age, BMI, and HbA1c, in type 2 diabetes participants, four out of seven transketolase SNPs were associated with DSPN for all three MNSI versions (all p ≤ 0.004). The odds ratios of these associations increased with extending the MNSI score, for example, OR (95% CI) for SNP rs62255988 with MNSI > 2: 1.99 (1.16-3.41), MNSI > 3: 2.27 (1.26-4.09), and MNSI > 4: 4.78 (2.22-10.26); SNP rs9284890 with MNSI > 2: 2.43 (1.42-4.16), MNSI > 3: 3.46 (1.82-6.59), and MNSI > 4: 4.75 (2.15-10.51). In contrast, no associations were found between transketolase SNPs and the three MNSI versions in the NGT and prediabetes groups. CONCLUSIONS: The link of genetic variation in transketolase enzyme to diabetic polyneuropathy corroborated at the population level strengthens the concept suggesting an important role of pathways metabolising glycolytic intermediates in the evolution of diabetic polyneuropathy.


Assuntos
Diabetes Mellitus Tipo 2 , Neuropatias Diabéticas , Polimorfismo de Nucleotídeo Único , Transcetolase , Humanos , Transcetolase/genética , Feminino , Masculino , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/epidemiologia , Neuropatias Diabéticas/etiologia , Pessoa de Meia-Idade , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/complicações , Estudos Transversais , Idoso , Predisposição Genética para Doença , Estado Pré-Diabético/genética , Estado Pré-Diabético/complicações , Prognóstico , Adulto , Seguimentos
2.
Metabolites ; 14(4)2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38668337

RESUMO

The underlying molecular mechanisms for the development of non-alcoholic fatty liver (NAFL) and its progression to advanced liver diseases remain elusive. Glyoxalase 1 (Glo1) loss, leading to elevated methylglyoxal (MG) and dicarbonyl stress, has been implicated in various diseases, including obesity-related conditions. This study aimed to investigate changes in the glyoxalase system in individuals with non-pathological liver fat. Liver biopsies were obtained from 30 individuals with a narrow range of BMI (24.6-29.8 kg/m2). Whole-body insulin sensitivity was assessed using HOMA-IR. Liver biopsies were analyzed for total triglyceride content, Glo1 and Glo2 mRNA, protein expression, and activity. Liquid chromatography-tandem mass spectrometry determined liver dicarbonyl content and oxidation and glycation biomarkers. Liver Glo1 activity showed an inverse correlation with HOMA-IR and liver triglyceride content, but not BMI. Despite reduced Glo1 activity, no associations were found with elevated liver dicarbonyls or glycation markers. A sex dimorphism was observed in Glo1, with females exhibiting significantly lower liver Glo1 protein expression and activity, and higher liver MG-H1 content compared to males. This study demonstrates that increasing liver fat, even within a non-pathological range, is associated with reduced Glo1 activity.

5.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446346

RESUMO

Previously, we found that human pancreatic preadipocytes (PPAs) and islets influence each other and that the crosstalk with the fatty liver via the hepatokine fetuin-A/palmitate induces inflammatory responses. Here, we examined whether the mRNA-expression of pancreatic extracellular matrix (ECM)-forming and -degrading components differ in PPAs from individuals with normal glucose regulation (PPAs-NGR), prediabetes (PPAs-PD), and type 2 diabetes (PPAs-T2D), and whether fetuin-A/palmitate impacts ECM-formation/degradation and associated monocyte invasion. Human pancreatic resections were analyzed (immuno)histologically. PPAs were studied for mRNA expression by real-time PCR and protein secretion by Luminex analysis. Furthermore, co-cultures with human islets and monocyte migration assays in Transwell plates were conducted. We found that in comparison with NGR-PPAs, TIMP-2 mRNA levels were lower in PPAs-PD, and TGF-ß1 mRNA levels were higher in PPAs-T2D. Fetuin-A/palmitate reduced fibronectin, decorin, TIMP-1/-2 and TGF-ß1 mRNA levels. Only fibronectin was strongly downregulated by fetuin-A/palmitate independently of the glycemic status. Co-culturing of PPAs with islets increased TIMP-1 mRNA expression in islets. Fetuin-A/palmitate increased MMP-1, usherin and dermatopontin mRNA-levels in co-cultured islets. A transmigration assay showed increased monocyte migration towards PPAs, which was enhanced by fetuin-A/palmitate. This was more pronounced in PPAs-T2D. The expression of distinct ECM components differs in PPAs-PD and PPAs-T2D compared to PPAs-NGR, suggesting that ECM alterations can occur even in mild hyperglycemia. Fetuin-A/palmitate impacts on ECM formation/degradation in PPAs and co-cultured islets. Fetuin-A/palmitate also enhances monocyte migration, a process which might impact on matrix turnover.


Assuntos
Diabetes Mellitus Tipo 2 , Estado Pré-Diabético , Humanos , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Fibronectinas/metabolismo , Inibidor Tecidual de Metaloproteinase-1/metabolismo , alfa-2-Glicoproteína-HS/metabolismo , Matriz Extracelular/metabolismo , Hormônios Pancreáticos/metabolismo , Palmitatos/farmacologia , RNA Mensageiro/metabolismo , Adipócitos/metabolismo , Glucose/farmacologia , Glucose/metabolismo
6.
Nutrients ; 15(11)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37299560

RESUMO

Vitamin B12 (B12) is an essential cofactor of two important biochemical pathways, the degradation of methylmalonic acid and the synthesis of methionine from homocysteine. Methionine is an important donor of methyl groups for numerous biochemical reactions, including DNA synthesis and gene regulation. Besides hematological abnormalities (megaloblastic anemia or even pancytopenia), a deficiency in B12 may cause neurological symptoms, including symptoms resembling diabetic neuropathy. Although extensively studied, the underlining molecular mechanism for the development of diabetic peripheral neuropathy (DPN) is still unclear. Most studies have found a contribution of oxidative stress in the development of DPN. Detailed immunohistochemical investigations in sural nerve biopsies obtained from diabetic patients with DPN point to an activation of inflammatory pathways induced via elevated advanced glycation end products (AGE), ultimately resulting in increased oxidative stress. Similar results have been found in patients with B12 deficiency, indicating that the observed neural changes in patients with DPN might be caused by cellular B12 deficiency. Since novel results show that B12 exerts intrinsic antioxidative activity in vitro and in vivo, B12 may act as an intracellular, particularly as an intramitochondrial, antioxidant, independent from its classical, well-known cofactor function. These novel findings may provide a rationale for the use of B12 for the treatment of DPN, even in subclinical early states.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Deficiência de Vitamina B 12 , Humanos , Vitamina B 12/uso terapêutico , Neuropatias Diabéticas/etiologia , Neuropatias Diabéticas/tratamento farmacológico , Deficiência de Vitamina B 12/diagnóstico , Antioxidantes/uso terapêutico , Metionina , Vitaminas/uso terapêutico , Diabetes Mellitus/tratamento farmacológico
8.
Clin Kidney J ; 14(1): 269-276, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33564428

RESUMO

BACKGROUND: The hepatokine fetuin-A, released by the human liver, promotes pro-inflammatory effects of perivascular fat. The involvement of inflammation in type 2 diabetes mellitus (T2DM) can affect the kidney and contribute to the development of diabetic kidney disease. Therefore we examined the association of urinary fetuin-A protein fragments with renal damage in T2DM patients. METHODS: Urinary peptides of 1491 individuals using proteome data available from the human urine proteome database were analysed. Prediction of proteases involved in urinary peptide generation was performed using the Proteasix tool. RESULTS: We identified 14 different urinary protein fragments that belong to the region of the connecting peptide (amino acid 301-339) of the total fetuin-A protein. Calpains (CAPN1 and CAPN2), matrix metalloproteinase and pepsin A-3 were identified as potential proteases that were partially confirmed by previous in vitro studies. Combined fetuin-A peptides (mean of amplitudes) were significantly increased in T2DM patients with kidney disease and to a lesser extent with cardiovascular risk. Furthermore, fetuin-A peptide levels displayed a significant negative correlation with baseline estimated glomerular filtration rate (eGFR) values (r = -0.316, P < 0.0001) and with the slope (%) of eGFR per year (r = -0.096, P = 0.023). A multiple regression model including fetuin-A peptide and albuminuria resulted in a significantly improved correlation with eGFR (r = -0.354, P < 0.0001) compared with albuminuria, indicating an added value of this novel biomarker. CONCLUSIONS: The urinary proteome analysis demonstrated the association of fetuin-A peptides with impaired kidney function in T2DM patients. Furthermore, fetuin-A peptides displayed early signs of kidney damage before albuminuria appeared and therefore can be used as markers for kidney disease detection.

9.
J Clin Med ; 10(3)2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33499061

RESUMO

The hepatokine fetuin A (Fet A) has been associated with diverse pathological states such as insulin resistance, type 2 diabetes, macrovascular disease, and systemic ectopic and vascular calcification. Fet A may also play a role in tumor growth and metastasis. The biological activity of Fet A may be affected by various modifications, including phosphorylation, O- and N-glycosylation and fatty acid binding. We developed an antibody-based assay for the detection of Fet A phosphorylated at serine 312. Fatty acid pattern was determined by gas chromatography. Using the antibody, we found that the phosphorylation was stable in human plasma or serum at room temperature for 8 h. We observed that Fet A is present in several glycosylation forms in human plasma, but the extent of Ser312 phosphorylation was not associated with glycosylation. The phosphorylation pattern did not change during an oral glucose tolerance test (0-120 min). We further found that human Fet A binds preferentially saturated fatty acids (>90%) at the expense of mono- and poly-unsaturated fatty acids. Our results indicate that different molecular species of Fet A are present in human plasma and that these different modifications may determine the different biological effects of Fet A.

10.
Eur J Neurol ; 28(5): 1557-1565, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33449400

RESUMO

BACKGROUND: Parkinson´s disease (PD) has a large phenotypic variability, which may, at least partly, be genetically driven including alterations of gene products. Candidates might not only be proteins associated with disease risk but also pathways that play a role in aging. OBJECTIVE: To evaluate phenotype-modifying effects of genetic variants in Klotho, a longevity gene. METHODS: We analyzed two longitudinal cohorts: one local cohort comprising 459 PD patients who underwent genotyping for the KL-VS haplotype in Klotho including a subgroup of 125 PD patients and 50 healthy controls who underwent biochemical cerebrospinal fluid (CSF) analyses of Klotho and fibroblast growth factor 23 as well as vitamin D metabolites. The second cohort comprised 297 patients from the Parkinson's Progression Markers Initiative (PPMI) for validation of genetic-clinical findings. RESULTS: PD patients carrying the KL-VS haplotype demonstrated a shorter interval between PD onset and onset of cognitive impairment (both cohorts) and higher Unified Parkinson´s Disease Rating Scale part III (UPDRS III) scores (PPMI). CSF protein levels of Klotho and fibroblast growth factor 23 were lower in PD patients irrespective of gender compared to controls. Moreover, low CSF levels of Klotho were associated with higher scores in the UPDRS III and Hoehn and Yahr Scale. CONCLUSIONS: Our results indicate that genetic variants in Klotho together with its corresponding CSF protein profiles are associated with aspects of disease severity in PD. These findings suggest that pathways associated with aging might be targets for future biomarker research in PD.


Assuntos
Doença de Parkinson , Biomarcadores , Proteínas do Líquido Cefalorraquidiano , Estudos de Coortes , Humanos , Longevidade , Testes de Estado Mental e Demência , Doença de Parkinson/genética
11.
Sci Rep ; 10(1): 15093, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934269

RESUMO

X-linked Adrenoleukodystrophy (X-ALD) is caused by mutations in the ABCD1 gene resulting in the accumulation of very long chain fatty acids (VLCFA). X-ALD is the most common peroxisomal disorder with adult patients (male and female) presenting with progressive spastic paraparesis with bladder disturbance, sensory ataxia with impaired vibration sense, and leg pain. 80% of male X-ALD patients have an adrenal failure, while adrenal dysfunction is rare in women with X-ALD. The objective of this study was to define optimal serum VLCFA cutoff values in patients with X-ALD-like phenotypes for the differentiation of genetically confirmed X-ALD and Non-X-ALD individuals. Three groups were included into this study: a) X-ALD cases with confirmed ABCD1 mutations (n = 34) and two Non-X-ALD cohorts: b) Patients with abnormal serum VCLFA levels despite negative testing for ABCD1 mutations (n = 15) resulting from a total of 1,953 VLCFA tests c) Phenotypically matching patients as Non-X-ALD controls (n = 104). Receiver operating curve analysis was used to optimize VLCFA cutoff values, which differentiate patients with genetically confirmed X-ALD and Non-X-ALD individuals. The serum concentration of C26:0 was superior to C24:0 for the detection of X-ALD. The best differentiation of Non-X-ALD and X-ALD individuals was obtained with a cutoff value of < 1.0 for the C24:0/C22:0 ratio resulting in a sensitivity of 97%, a specificity of 94.1% and a positive predictive value (PPV) of 83.8% for true X-ALD. Our findings further suggested a cutoff of < 0.02 for the ratio C26:0/C22:0 leading to a sensitivity of 90.9%, a specificity of 95.0%, and a PPV of 80.6%. Pearson correlation indicated a significant positive association between total blood cholesterol and VLCFA values. Usage of serum VLCFA are economical and established biomarkers suitable for the guidance of genetic testing matching the X-ALD phenotype. We suggest using our new optimized cutoff values, especially the two ratios (C24:0/C22:0 and C26:0/C22:0), in combination with standard lipid profiles.


Assuntos
Adrenoleucodistrofia/sangue , Adrenoleucodistrofia/diagnóstico , Ácidos Graxos/sangue , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Astrócitos/patologia , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mutação/genética , Sensibilidade e Especificidade
12.
Eur J Nutr ; 59(2): 729-739, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30859363

RESUMO

OBJECTIVE: Choline and docosahexaenoic acid (DHA) are essential nutrients for preterm infant development. They are metabolically linked via phosphatidylcholine (PC), a constitutive plasma membrane lipid and the major transport form of DHA in plasma. Plasma choline and DHA-PC concentrations rapidly decline after preterm birth. To improve preterm infant nutrition, we evaluated combined compared to exclusive choline and DHA supplementation, and standard feeding. DESIGN: Randomized partially blinded single-center trial. SETTING: Neonatal tertiary referral center in Tübingen, Germany. PATIENTS: 24 inborn preterm infants < 32 week postmenstrual age. INTERVENTIONS: Standard nutrition (control) or, additionally, enteral choline (30 mg/kg/day), DHA (60 mg/kg/day), or both for 10 days. Single enteral administration of 3.6 mg/kg [methyl-D9-] choline chloride as a tracer at 7.5 days. MAIN OUTCOME MEASURES: Primary outcome variable was plasma choline following 7 days of supplementation. Deuterated and unlabeled choline metabolites, DHA-PC, and other PC species were secondary outcome variables. RESULTS: Choline supplementation increased plasma choline to near-fetal concentrations [35.4 (32.8-41.7) µmol/L vs. 17.8 (16.1-22.4) µmol/L, p < 0.01] and decreased D9-choline enrichment of PC. Single DHA treatment decreased DHA in PC relative to total lipid [66 (60-68)% vs. 78 (74-80)%; p < 0.01], which was prevented by choline. DHA alone increased DHA-PC only by 35 (26-45)%, but combined treatment by 63 (49-74)% (p < 0.001). D9-choline enrichment showed preferential synthesis of PC containing linoleic acid. PC synthesis via phosphatidylethanolamine methylation resulted in preferential synthesis of DHA-containing D3-PC, which was increased by choline supplementation. CONCLUSIONS: 30 mg/kg/day additional choline supplementation increases plasma choline to near-fetal concentrations, dilutes the D9-choline tracer via increased precursor concentrations and improves DHA homeostasis in preterm infants. TRIAL REGISTRATION: clinicaltrials.gov. Identifier: NCT02509728.


Assuntos
Colina/sangue , Colina/farmacologia , Ácidos Docosa-Hexaenoicos/sangue , Ácidos Docosa-Hexaenoicos/farmacologia , Fenômenos Fisiológicos da Nutrição do Lactente/efeitos dos fármacos , Recém-Nascido Prematuro , Biomarcadores/sangue , Colina/administração & dosagem , Suplementos Nutricionais , Ácidos Docosa-Hexaenoicos/administração & dosagem , Quimioterapia Combinada/métodos , Nutrição Enteral/métodos , Feminino , Alemanha , Humanos , Recém-Nascido , Masculino
13.
Biotechnol Adv ; 39: 107359, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-30802485

RESUMO

Harmonization of biomarkers is important for the comparability of laboratory results as it allows the definition of universal reference values and clinical decision limits. In diabetology, immunoassays are widely used to determine HbA1c, C-peptide, insulin, and autoantibodies to beta cell proteins, which are essential biomarkers for the diagnosis and classification of diabetes mellitus. Furthermore, as large clinical studies have identified HbA1c as a predictor for the development of diabetic complications, HbA1c has evolved as the general treatment target. For decades, the use of non-harmonized assays caused confusion. After the standardization of HbA1c, the worldwide comparability improved and increased the confidence in this laboratory biomarker. Insulin and C-peptide are not only valuable biomarkers to assess beta-cell function, but may also be used to evaluate insulin resistance, a metabolic feature of type 2 diabetes often occurring before its manifestation. Long-lasting efforts led to substantial improvements in the harmonization process of C-peptide assays, but harmonization of insulin assays is still ongoing. Therefore, C-peptide is now sometimes used as a surrogate biomarker for insulin. Furthermore, autoantibodies against beta cell components are important biomarkers for the accurate differentiation of type 1, type 2, and other special types of diabetes. Owing to the heterogeneity of these autoantibodies against beta cell proteins, harmonization is very difficult to achieve. International efforts are in progress to harmonize the current assays, as the presence of autoantibodies against beta cell proteins predicts the development of type 1 diabetes in early life. In conclusion, clinical studies linking diagnosis, classification, prediction, and treatment to laboratory values of the respective biomarkers need to be harmonized to avoid misdiagnosis and incorrect clinical decisions, thus improving patient care and safety.


Assuntos
Imunoensaio , Biomarcadores , Peptídeo C , Diabetes Mellitus , Humanos , Insulina
14.
Exp Clin Endocrinol Diabetes ; 128(10): 644-653, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30986881

RESUMO

Glucose-stimulated insulin secretion (GSIS) is the gold standard for ß-cell function. Both experimental and clinical diabetology, i. e., preceding transplantation of isolated human islets, depend on functional testing. However, multiple factors influence GSIS rendering the comparison of different in vitro tests of glucose responsiveness difficult. This study examined the influence of bovine serum albumin (BSA)-coupled fatty acids on GSIS. Isolated islet preparations of human donors and of 12-months old mice displayed impaired GSIS in the presence of 0.5% FFA-free BSA compared to 0.5% BSA (fraction V, not deprived from fatty acids). In aged INS-1E cells, i. e. at a high passage number, GSIS became highly sensitive to FFA-free BSA. Readdition of 30 µM palmitate or 30 µM oleate to FFA-free BSA did not rescue GSIS, while the addition of 100 µM palmitate and the raise of extracellular Ca2+from 1.3 to 2.6 mM improved glucose responsiveness. A high concentration of palmitate (600 µM), which fully activates FFA1, largely restored insulin secretion. The FFA1-agonist TUG-469 also increased insulin secretion but to a lesser extent than palmitate. Glucose- and TUG-induced Ca2+oscillations were impaired in glucose-unresponsive, i. e., aged INS-1E cells. These results suggest that fatty acid deprivation (FFA-free BSA) impairs GSIS mainly through an effect on Ca2+sensitivity.


Assuntos
Ácidos Graxos não Esterificados/metabolismo , Glucose/farmacologia , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insulinoma , Compostos de Anilina/farmacologia , Animais , Cálcio/metabolismo , Bovinos , Linhagem Celular Tumoral , Humanos , Camundongos , Palmitatos/farmacologia , Fenilpropionatos/farmacologia
16.
J Clin Endocrinol Metab ; 104(6): 2041-2053, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30541128

RESUMO

CONTEXT: The effect of a lifestyle intervention to reduce liver fat content in nonalcoholic fatty liver disease in humans is influenced by genetics. We hypothesized that the amino acid exchange in human Gly388Arg (mouse homolog: Gly385Arg) in fibroblast growth factor receptor 4 (FGFR4), which regulates bile acid, lipid, and glucose metabolism, could determine hepatic lipid accumulation and insulin sensitivity. Mechanisms of this substitution were studied in mice under normal chow and high-fat diets. DESIGN: In humans, the Gly388Arg polymorphism was studied for its relationship with changes in liver fat content and insulin sensitivity during 9 months of a lifestyle intervention. We also studied a knock-in mouse strain with an Arg385 allele introduced into the murine FGFR4 gene under normal chow and high-fat diets. RESULTS: In humans, the FGFR4 Arg388 allele was not associated with liver fat content or insulin sensitivity in subjects who were overweight and obese before lifestyle intervention. However, it was associated with less decrease in liver fat content and less increase in insulin sensitivity during the intervention. In mice receiving normal chow, the FGFR4 Arg385 allele was associated with elevated hepatic triglyceride content, altered hepatic lipid composition, and increased hepatic expression of genes inducing de novo lipogenesis and glycolysis. Body fat mass and distribution, glucose tolerance, and insulin sensitivity were unaltered. The FGFR4 Arg385 allele had no effect on glucose or lipid metabolism under the high-fat diet. CONCLUSION: Our data indicate that the FGFR4 Arg388(385) allele affects hepatic lipid and glucose metabolism specifically during healthy caloric intake.


Assuntos
Lipogênese/genética , Hepatopatia Gordurosa não Alcoólica/dietoterapia , Obesidade/dietoterapia , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Adulto , Animais , Glicemia/análise , Glicemia/metabolismo , Dieta Saudável , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Seguimentos , Técnicas de Introdução de Genes , Teste de Tolerância a Glucose , Glicólise/genética , Humanos , Resistência à Insulina/genética , Fígado/química , Fígado/metabolismo , Fígado/patologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Obesidade/sangue , Obesidade/etiologia , Obesidade/metabolismo , Polimorfismo de Nucleotídeo Único , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Triglicerídeos/análise , Triglicerídeos/metabolismo
17.
J Clin Endocrinol Metab ; 103(9): 3299-3309, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931171

RESUMO

Purpose: Recently, alterations in maternal lipid metabolism were associated with gestational diabetes mellitus (GDM). However, detailed plasma lipid profiles and their relevance for placental and fetal metabolism are currently not understood. Methods: Maternal and placental lipid profiles were characterized in women with GDM and women with normal glucose tolerance (NGT). Inflammatory gene expression was compared in placentas and primary term trophoblasts between the groups. In addition, trophoblasts were stimulated with nonesterified fatty acids (NEFAs), and effects on gene expression were quantified. Finally, placental macrophage content and cord blood concentrations of inflammatory parameters and NEFAs were compared between women with GDM and women with NGT with similar body mass index (BMI). Results: Palmitate and stearate levels were elevated in both maternal plasma and placental tissue of women with GDM. Placental GDM-associated elevations of IL6, IL8, and TLR2 expression were reflected in trophoblasts derived from women with GDM. Stimulation of primary trophoblasts with palmitate led to increased mRNA expression and protein release of the cytokine IL6 and the chemokine IL8. In line with this, elevated amounts of CD68-positive cells were quantified in the placental tissue of women with GDM. No GDM-associated elevations in a range of inflammatory parameters and NEFAs in cord blood of NGT vs GDM neonates was found. Conclusions: GDM, independently of BMI, altered maternal plasma NEFAs and the placental lipid profile. GDM was associated with trophoblast and whole-placenta lipoinflammation; however, this was not accompanied by elevated concentrations of inflammatory cytokines or NEFAs in neonatal cord blood.


Assuntos
Diabetes Gestacional/metabolismo , Placenta/metabolismo , Adulto , Antropometria/métodos , Antígenos CD/análise , Antígenos de Diferenciação Mielomonocítica/análise , Índice de Massa Corporal , Células Cultivadas , Citocinas/sangue , Diabetes Gestacional/sangue , Diabetes Gestacional/patologia , Ácidos Graxos não Esterificados/sangue , Feminino , Sangue Fetal/metabolismo , Expressão Gênica , Humanos , Mediadores da Inflamação/metabolismo , Lipídeos/análise , Placenta/patologia , Gravidez , RNA Mensageiro/genética , Trofoblastos/metabolismo
18.
Am J Physiol Endocrinol Metab ; 314(3): E266-E273, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29138227

RESUMO

The liver is a central regulator of whole body glucose, and lipid homeostasis and hepatokines, like fetuin-A, have been identified as markers and mediators of fatty liver-induced cardiometabolic risk. The closely related protein fetuin-B was shown to be upregulated in the fatty liver and to impact on glucose homeostasis in mice. In the present study we aimed to test the relevance of these findings in humans. In 55 subjects, hepatic mRNA expression of both hepatokines, fetuin-A and fetuin-B, associated positively with liver triglyceride content, whereas only fetuin-A expression associated with the homeostatic model assessment of insulin resistance. In 220 subjects who underwent precise metabolic phenotyping, circulating fetuin-A, but not fetuin-B, associated positively with liver fat content, and negatively with insulin sensitivity, measured during the oral glucose tolerance test (OGTT) and during the euglycemic, hyperinsulinemic clamp. Both circulating fetuin-A and fetuin-B correlated positively with the glucose area under the curve during the OGTT, but after additional adjustment for insulin sensitivity this relationship remained significant only for fetuin-B. In conclusion, despite the fact that the two hepatokines, fetuin-A and fetuin-B, are upregulated in the state of hepatic steatosis in humans, it appears that they differently impact on glucose homeostasis. Our data are in agreement with observations that fetuin-A can alter insulin signaling and that fetuin-B may regulate glucose homeostasis via so far unknown effects, possibly on glucose effectiveness.


Assuntos
Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Fetuína-B , alfa-2-Glicoproteína-HS , Idoso , Estudos de Coortes , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Feminino , Fetuína-B/análise , Fetuína-B/genética , Fetuína-B/metabolismo , Teste de Tolerância a Glucose , Humanos , Resistência à Insulina/fisiologia , Fígado/metabolismo , Fígado/patologia , Masculino , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Regulação para Cima/genética , alfa-2-Glicoproteína-HS/análise , alfa-2-Glicoproteína-HS/genética , alfa-2-Glicoproteína-HS/metabolismo
19.
Eur J Nutr ; 57(6): 2105-2112, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28638995

RESUMO

BACKGROUND: Docosahexaenoic (C22:6) and arachidonic (C20:4) acids are long-chain polyunsaturated fatty acids (LC-PUFA) essential to neonatal development, being present in the glycerophospholipids of all organs, particularly the brain. In plasma, LC-PUFAs are mainly present in lipoprotein lipids, which are neutral lipids (triglycerides and cholesterol esters) and glycerophospholipids, like choline containing phosphatidylcholine (PC). PURPOSE: To guide future supplementation strategies of C22:6 and C20:4 in combination with choline, we determined the distribution of C20:4 and C22:6 between PC and neutral lipid. METHODS: Preterm infant plasma (N = 59, postmenstrual age [PMA] 33.9 wk (32.4-36.0)) and cord plasma (N = 34, PMA 34.0 wk (30.86-38.4)) were investigated. PC and neutral lipids were extracted and analyzed using tandem mass spectrometry and gas chromatography, respectively. Data are reported as medians and 25th/75th percentiles. RESULTS: In cord blood, C20:4-PC and C22:6-PC comprised 36.1% (34.2-38.6) and 10.2% (8.8-12.8) of total PC, respectively. In preterm infant plasma, values were only 20.8% (19.2-23.1) and 5.7% (5.2-6.0), respectively (p < 0.001 each). Nevertheless, in preterm infant plasma, 80.6% (77.6-83.0) of C20:4 and 86.0% (83.0-88.9) of C22:6 were found in PC. These values exceeded the proportions of C20:4 and C22:6 in PC of cord plasma [71.3% (67.8-72.9) and 79.2% (75.2-85.4), respectively] (p < 0.0001 each). CONCLUSION: Irrespective of the low proportions of C20:4-PC and C22:6-PC in preterm infant plasma lipids, PC is the major transporter for C20:4 and C22:6. Our data support the hypotheses that choline deficiency may impair end-organ availability of these LC-PUFA in preterm infants. Therefore, supplementation of C20:4 and C22:6 might better be accompanied by choline supplementation.


Assuntos
Ácidos Graxos Insaturados/metabolismo , Recém-Nascido Prematuro , Fosfatidilcolinas/metabolismo , Ácidos Graxos , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Alemanha , Humanos , Recém-Nascido , Masculino , Estado Nutricional
20.
NMR Biomed ; 30(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28543814

RESUMO

It is generally accepted that the amount and distribution of adipose tissue (AT) in the human body play an important role in the pathogenesis of metabolic diseases. In addition, metabolic effects of released saturated fatty acids (FAs) in blood are known to be more critical than those of unsaturated FAs. However, little is known about the variability in unsaturation of FAs in various AT compartments. The aim of this prospective study was the assessment of mono- and polyunsaturated FAs in various AT compartments by localized 1 H-MRS in order to obtain insight into the intra- and interindividual variability. Associations of FA unsaturation with intrahepatic lipids (IHLs), insulin sensitivity and related AT volumes were analyzed. Fifty healthy Caucasians (36 male, 14 female) participated in this study. Spectroscopic examinations were performed in subcutaneous adipose tissue in the neck (SCATneck ), abdominal deep subcutaneous adipose tissue (DSCAT), abdominal superficial subcutaneous adipose tissue (SSCAT), visceral adipose tissue (VAT), tibial bone marrow (BM) and subcutaneous adipose tissue of the lower leg (SCATcalf ) at 3 T. Unsaturated index (UI) was calculated by the ratio of olefinic and methyl resonances, polyunsaturated index (PUI) by the ratio of diallylic and methyl resonances. Volumes of AT compartments (by T1 -weighted MRI) and IHL (single-voxel STEAM) were assessed at 1.5 T, insulin sensitivity by an oral glucose tolerance test. UI was highest for SCATcalf (0.622) and lowest for BM (0.527). Highest PUI was observed for SSCAT (0.108), lowest for BM (0.093). Significant intraindividual differences between UIs-but not PUIs-are present for most compartments. There is a non-significant trend for higher UI in males but otherwise no correlation to anthropometric data (age, BMI). A significant negative correlation between UI and AT volume was observed for VAT but for none of the other compartments. Neither UIs nor PUIs show a relation with IHL; insulin sensitivity is significantly correlated to UI in BM (p < 0.01). Unsaturation indices in several distinct AT compartments are location dependent. Our cohort showed only moderate gender-related differences, with a trend towards less unsaturated FAs (mainly PUI) in females. In BM, insulin resistant subjects are characterized by a higher UI compared with the insulin sensitive ones. Further studies in larger cohorts are necessary to gain further insight into unsaturation of AT.


Assuntos
Tecido Adiposo/metabolismo , Ácidos Graxos Insaturados/metabolismo , Espectroscopia de Prótons por Ressonância Magnética/métodos , Adulto , Idoso , Feminino , Humanos , Resistência à Insulina , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Reprodutibilidade dos Testes , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA