Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Opt Express ; 31(24): 39670-39680, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38041283

RESUMO

In order for optical cavities to enable strong light-matter interactions for quantum metrology, networking, and scalability in quantum computing systems, their mirrors must have minimal losses. However, high-finesse dielectric cavity mirrors can degrade in ultra-high vacuum (UHV), increasing the challenges of upgrading to cavity-coupled quantum systems. We observe the optical degradation of high-finesse dielectric optical cavity mirrors after high-temperature UHV bake in the form of a substantial increase in surface roughness. We provide an explanation of the degradation through atomic force microscopy (AFM), X-ray fluorescence (XRF), selective wet etching, and optical measurements. We find the degradation is explained by oxygen reduction in Ta2O5 followed by growth of tantalum sub-oxide defects with height to width aspect ratios near ten. We discuss the dependence of mirror loss on surface roughness and finally give recommendations to avoid degradation to allow for quick adoption of cavity-coupled systems.

2.
Phys Rev Lett ; 131(6): 063401, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37625064

RESUMO

We report on the creation of an array of spin-squeezed ensembles of cesium atoms via Rydberg dressing, a technique that offers optical control over local interactions between neutral atoms. We optimize the coherence of the interactions by a stroboscopic dressing sequence that suppresses super-Poissonian loss. We thereby prepare squeezed states of N=200 atoms with a metrological squeezing parameter ξ^{2}=0.77(9) quantifying the reduction in phase variance below the standard quantum limit. We realize metrological gain across three spatially separated ensembles in parallel, with the strength of squeezing controlled by the local intensity of the dressing light. Our method can be applied to enhance the precision of tests of fundamental physics based on arrays of atomic clocks and to enable quantum-enhanced imaging of electromagnetic fields.

3.
Science ; 376(6598): 1155-1156, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679424

RESUMO

A quantum com puter makes light work of the maximum independent set problem.


Assuntos
Teoria Quântica
5.
Nature ; 600(7890): 630-635, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937894

RESUMO

Interactions govern the flow of information and the formation of correlations between constituents of many-body quantum systems, dictating phases of matter found in nature and forms of entanglement generated in the laboratory. Typical interactions decay with distance and thus produce a network of connectivity governed by geometry-such as the crystalline structure of a material or the trapping sites of atoms in a quantum simulator1,2. However, many envisioned applications in quantum simulation and computation require more complex coupling graphs including non-local interactions, which feature in models of information scrambling in black holes3-6 and mappings of hard optimization problems onto frustrated classical magnets7-11. Here we describe the realization of programmable non-local interactions in an array of atomic ensembles within an optical cavity, in which photons carry information between atomic spins12-19. By programming the distance dependence of the interactions, we access effective geometries for which the dimensionality, topology and metric are entirely distinct from the physical geometry of the array. As examples, we engineer an antiferromagnetic triangular ladder, a Möbius strip with sign-changing interactions and a treelike geometry inspired by concepts of quantum gravity5,20-22. The tree graph constitutes a toy model of holographic duality21,22, in which the quantum system lies on the boundary of a higher-dimensional geometry that emerges from measured correlations23. Our work provides broader prospects for simulating frustrated magnets and topological phases24, investigating quantum optimization paradigms10,11,25,26 and engineering entangled resource states for sensing and computation27,28.

6.
Phys Rev Lett ; 125(6): 060402, 2020 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-32845652

RESUMO

Using an ensemble of atoms in an optical cavity, we engineer a family of nonlocal Heisenberg Hamiltonians with continuously tunable anisotropy of the spin-spin couplings. We thus gain access to a rich phase diagram, including a paramagnetic-to-ferromagnetic Ising phase transition that manifests as a diverging magnetic susceptibility at the critical point. The susceptibility displays a symmetry between Ising interactions and XY (spin-exchange) interactions of the opposite sign, which is indicative of the spatially extended atomic system behaving as a single collective spin. Images of the magnetization dynamics show that spin-exchange interactions protect the coherence of the collective spin, even against inhomogeneous fields that completely dephase the noninteracting and Ising systems. Our results underscore prospects for harnessing spin-exchange interactions to enhance the robustness of spin squeezing protocols.

7.
Phys Rev Lett ; 123(13): 130601, 2019 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-31697527

RESUMO

We propose an experimentally realizable quantum spin model that exhibits fast scrambling, based on nonlocal interactions that couple sites whose separation is a power of 2. By controlling the relative strengths of deterministic, nonrandom couplings, we can continuously tune from the linear geometry of a nearest-neighbor spin chain to an ultrametric geometry in which the effective distance between spins is governed by their positions on a tree graph. The transition in geometry can be observed in quench dynamics, and is furthermore manifest in calculations of the entanglement entropy. Between the linear and treelike regimes, we find a peak in entanglement and exponentially fast spreading of quantum information across the system. Our proposed implementation, harnessing photon-mediated interactions among cold atoms in an optical cavity, offers a test case for experimentally observing the emergent geometry of a quantum many-body system.

8.
Science ; 364(6446): 1137-1138, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31221847
9.
Phys Rev Lett ; 122(1): 010405, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-31012698

RESUMO

We report direct observations of photon-mediated spin-exchange interactions in an atomic ensemble. Interactions extending over a distance of 500 µm are generated within a cloud of cold rubidium atoms coupled to a single mode of light in an optical resonator. We characterize the system via quench dynamics and imaging of the local magnetization, verifying the coherence of the interactions and demonstrating optical control of their strength and sign. Furthermore, by initializing the spin-1 system in the m_{f}=0 Zeeman state, we observe correlated pair creation in the m_{f}=±1 states, a process analogous to spontaneous parametric down-conversion and to spin mixing in Bose-Einstein condensates. Our work opens new opportunities in quantum simulation with long-range interactions and in entanglement-enhanced metrology.

10.
Phys Rev Lett ; 121(12): 123602, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296158

RESUMO

We propose a robust scheme for generating macroscopic superposition states of spin or motion with the aid of a single photon. Shaping the wave packet of the photon enables high-fidelity preparation of nonclassical states of matter even in the presence of photon loss. Success is heralded by photodetection, enabling the scheme to be implemented with a weak coherent field. We analyze applications to preparing Schrödinger cat states of a collective atomic spin or of a mechanical oscillator coupled to an optical resonator. The method generalizes to preparing arbitrary superpositions of coherent states, enabling full quantum control. We illustrate this versatility by showing how to prepare Dicke or Fock states, as well as superpositions in the Dicke or Fock basis.

11.
Phys Rev Lett ; 117(10): 100001, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27636456
12.
Science ; 352(6289): 1094-7, 2016 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-27230376

RESUMO

Topology and geometry are essential to our understanding of modern physics, underlying many foundational concepts from high-energy theories, quantum information, and condensed-matter physics. In condensed-matter systems, a wide range of phenomena stem from the geometry of the band eigenstates, which is encoded in the matrix-valued Wilson line for general multiband systems. Using an ultracold gas of rubidium atoms loaded in a honeycomb optical lattice, we realize strong-force dynamics in Bloch bands that are described by Wilson lines and observe an evolution in the band populations that directly reveals the band geometry. Our technique enables a full determination of band eigenstates, Berry curvature, and topological invariants, including single- and multiband Chern and Z2 numbers.

13.
Phys Rev Lett ; 116(5): 053601, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26894711

RESUMO

We propose an approach to quantum phase estimation that can attain precision near the Heisenberg limit without requiring single-particle-resolved state detection. We show that the "one-axis twisting" interaction, well known for generating spin squeezing in atomic ensembles, can also amplify the output signal of an entanglement-enhanced interferometer to facilitate readout. Applying this interaction-based readout to oversqueezed, non-Gaussian states yields a Heisenberg scaling in phase sensitivity, which persists in the presence of detection noise as large as the quantum projection noise of an unentangled ensemble. Even in dissipative implementations-e.g., employing light-mediated interactions in an optical cavity or Rydberg dressing-the method significantly relaxes the detection resolution required for spectroscopy beyond the standard quantum limit.

14.
Phys Rev Lett ; 109(13): 133603, 2012 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-23030090

RESUMO

We demonstrate single-atom resolution, as well as detection sensitivity more than 20 dB below the quantum projection noise limit, for hyperfine-state-selective measurements on mesoscopic ensembles containing 100 or more atoms. The measurement detects the atom-induced shift of the resonance frequency of an optical cavity containing the ensemble. While spatially varying coupling of atoms to the cavity prevents the direct observation of a quantized signal, the demonstrated measurement resolution provides the readout capability necessary for atomic interferometry substantially below the standard quantum limit and down to the Heisenberg limit.

15.
Phys Rev Lett ; 107(14): 143005, 2011 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-22107191

RESUMO

We demonstrate cavity sideband cooling of a single collective motional mode of an atomic ensemble down to a mean phonon occupation number ⟨n⟩(min⁡)=2.0(-0.3)(+0.9). Both ⟨n⟩(min) and the observed cooling rate are in good agreement with an optomechanical model. The cooling rate constant is proportional to the total photon scattering rate by the ensemble, demonstrating the cooperative character of the light-emission-induced cooling process. We deduce fundamental limits to cavity cooling either the collective mode or, sympathetically, the single-atom degrees of freedom.

16.
Phys Rev Lett ; 104(25): 250801, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20867356

RESUMO

We study experimentally the application of a class of entangled states, squeezed spin states, to the improvement of atomic-clock precision. In the presence of anisotropic noise, the entanglement lifetime is strongly dependent on squeezing orientation. We measure the Allan deviation spectrum of a clock operated with a phase-squeezed input state. For averaging times up to 50 s the squeezed clock achieves a given precision 2.8(3) times faster than a clock operating at the standard quantum limit.

17.
Phys Rev Lett ; 104(7): 073602, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366881

RESUMO

We squeeze unconditionally the collective spin of a dilute ensemble of laser-cooled 87Rb atoms using their interaction with a driven optical resonator. The shape and size of the resulting spin uncertainty region are well described by a simple analytical model [M. H. Schleier-Smith, I. D. Leroux, and V. Vuletic, arXiv:0911.3936 [Phys. Rev. A (to be published)]] through 2 orders of magnitude in the effective interaction strength, without free parameters. We deterministically generate states with up to 5.6(6) dB of metrologically relevant spin squeezing on the canonical 87Rb hyperfine clock transition.

18.
Phys Rev Lett ; 104(7): 073604, 2010 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-20366883

RESUMO

We generate entangled states of an ensemble of 5x10{4} 87Rb atoms by optical quantum nondemolition measurement. The resonator-enhanced measurement leaves the atomic ensemble, prepared in a superposition of hyperfine clock levels, in a squeezed spin state. By comparing the resulting reduction of quantum projection noise [up to 8.8(8) dB] with the concomitant reduction of coherence, we demonstrate a clock input state with spectroscopic sensitivity 3.0(8) dB beyond the standard quantum limit.

19.
J Phys Chem A ; 111(31): 7411-9, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17566990

RESUMO

A linear AC trap for polar molecules in high-field seeking states has been devised and implemented, and its characteristics have been investigated both experimentally and theoretically. The trap is loaded with slow 15ND3 molecules in their ground state (para-ammonia) from a Stark decelerator. The trap's geometry offers optimal access as well as improved loading. We present measurements of the dependence of the trap's performance on the switching frequency, which exhibit a characteristic structure due to nonlinear resonance effects. The molecules are found to oscillate in the trap under the influence of the trapping forces, which were analyzed using 3D numerical simulations. On the basis of expansion measurements, molecules with a velocity and a position spread of 2.1 m/s and 0.4 mm, respectively, are still accepted by the trap. This corresponds to a temperature of 2.0 mK. From numerical simulations, we find the phase-space volume that can be confined by the trap (the acceptance) to be 50 mm3 (m/s)3.

20.
Phys Rev Lett ; 92(8): 085503, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14995788

RESUMO

We investigate the interaction of a carbon nanotube with a graphite substrate, using an interlayer potential that explicitly treats the registry dependence of the interaction. The carbon-carbon bond lengths in nanotubes differ slightly from those in flat graphite, so that the naively commensurate angular orientations for the tube with respect to the substrate lattice are destroyed. The interaction of a one-dimensional tube with a two-dimensional substrate then leads to an unusual registry phenomenon not visible in standard layer-on-layer growth: the system develops favorable orientations which clearly are incommensurate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA