Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 173(1): 59-72, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23440504

RESUMO

Antarctica, with its almost pristine conditions and relatively simple vegetation, offers excellent opportunities to investigate the influence of environmental factors on species performance, such information being crucial if the effects of possible climate change are to be understood. Antarctic vegetation is mainly cryptogamic. Cryptogams are poikilohydric and are only metabolically and photosynthetically active when hydrated. Activity patterns of the main life forms present, bryophytes (10 species, ecto- and endohydric), lichens (5 species) and phanerogams (2 species), were monitored for 21 days using chlorophyll a fluorescence as an indicator of metabolic activity and, therefore, of water regime at a mesic (hydration by meltwater) and a xeric (hydration by precipitation) site on Léonie Island/West Antarctic Peninsula (67°36'S). Length of activity depended mainly on site and form of hydration. Plants at the mesic site that were hydrated by meltwater were active for long periods, up to 100 % of the measurement period, whilst activity was much shorter at the xeric site where hydration was entirely by precipitation. There were also differences due to life form, with phanerogams and mesic bryophytes being most active and lichens generally much less so. The length of the active period for lichens was longer than in continental Antarctica but shorter than in the more northern Antarctic Peninsula. Light intensity when hydrated was positively related to the length of the active period. High activity species were strongly coupled to the incident light whilst low activity species were active under lower light levels and essentially uncoupled from incident light. Temperatures were little different between sites and also almost identical to temperatures, when active, for lichens in continental and peninsular Antarctica. Gradients in vegetation cover and growth rates across Antarctica are, therefore, not likely to be due to differences in temperature but more likely to the length of the hydrated (active) period. The strong effect on activity of the mode of hydration and the life form, plus the uncoupling from incident light for less active species, all make modelling of vegetation change with climate a more difficult exercise.


Assuntos
Briófitas/metabolismo , Mudança Climática , Ecossistema , Líquens/metabolismo , Água/metabolismo , Regiões Antárticas , Briófitas/fisiologia , Clorofila/metabolismo , Clorofila A , Líquens/fisiologia , Microclima , Temperatura , Fatores de Tempo
2.
Phytochemistry ; 65(22): 2977-85, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15504432

RESUMO

Tocotrienols are lipophilic antioxidants belonging to the tocochromanols, better known as vitamin E. Although present in cereal grains in high quantities not much is known about their function in plants. In a detailed study the temporal and spatial accumulation of tocotrienols and tocopherols during grain development in two barley cultivars was analyzed. Tocochromanols and lipids accumulated in parallel until 80% of the final dry weight of the kernels was reached. Later on the tocochromanol content did not change while the lipid content decreased. Generally, only about 13% of the tocochromanols were found in the germ fraction, whereas the pericarp fraction contained about 50% and the endosperm fraction about 37% of the tocochromanols. Altogether, about 85% of the tocochromanols were tocotrienols in both cultivars. In case of the tocopherols about 80% were found in the germ fraction and the remaining 20% in the pericarp fraction. Tocotrienols were almost equally present in the pericarp and the endosperm fraction. Individual forms of tocopherols and tocotrienols accumulated with different kinetics during barley grain development. The differences in distribution and accumulation indicate different functions of the individual tocochromanols during grain development.


Assuntos
Hordeum/crescimento & desenvolvimento , Sementes/metabolismo , Tocoferóis/metabolismo , Tocotrienóis/metabolismo , Cruzamentos Genéticos , Hordeum/metabolismo , Sementes/crescimento & desenvolvimento , Luz Solar , Temperatura , Fatores de Tempo , Distribuição Tecidual
3.
Oecologia ; 135(1): 30-8, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12647101

RESUMO

Photosynthetic activity, detected as chlorophyll a fluorescence, was measured for lichens under undisturbed snow in continental Antarctica using fibre optics. The fibre optics had been buried by winter snowfall after being put in place the previous year under snow-free conditions. The fibre optics were fixed in place using specially designed holding devices so that the fibre ends were in close proximity to selected lichens. Several temperature and PPFD (photosynthetic photon flux density) sensors were also installed in or close to the lichens. By attaching a chlorophyll a fluorometer to the previously placed fibre optics it proved possible to measure in vivo potential photosynthetic activity of continental Antarctic lichens under undisturbed snow. The snow cover proved to be a very good insulator for the mosses and lichens but, in contrast to the situation reported for the maritime Antarctic, it retained the severe cold of the winter and prevented early warming. Therefore, the lichens and mosses under snow were kept inactive at subzero temperatures for a prolonged time, even though the external ambient air temperatures would have allowed metabolic activity. The results suggest that the major activity period of the lichens was at the time of final disappearance of the snow and lasted about 10-14 days. The activation of lichens under snow by high air humidity appeared to be very variable and species specific. Xanthoria mawsonii was activated at temperatures below -10 degrees C through absorption of water from high air humidity. Physcia dubia showed some activation at temperatures around -5 degrees C but only became fully activated at thallus temperatures of 0 degrees C through liquid water. Candelariella flava stayed inactive until thallus temperatures close to zero indicated that liquid water had become available. Although the snow cover represented the major water supply for the lichens, lichens only became active for a brief time at or close to the time the snow disappeared. The snow did not provide a protected environment, as reported for alpine habitats, but appeared to limit lichen activity. This provides at least one explanation for the observed negative effect of extended snow cover on lichen growth.


Assuntos
Líquens/crescimento & desenvolvimento , Líquens/fisiologia , Neve , Adaptação Fisiológica , Regiões Antárticas , Clorofila/análise , Clorofila A , Monitoramento Ambiental , Tecnologia de Fibra Óptica , Fluorescência , Umidade , Fotossíntese
4.
Oecologia ; 130(2): 191-198, 2002 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28547141

RESUMO

Photosystem activity status of the green algal (Pseudocyphellaria lividofusca) and cyanobacterial (P. knightii) components of a photosymbiodeme were continuously monitored in the field over a period of 35 days. The photosymbiodeme grew on a Nothofagus menziesii tree at Lake Waikaremoana, Urewera National Park, North Island, New Zealand. Two Mini-PAM fluorometers were placed so that the chlorophyll a fluorescence, temperature and PPFD (photosynthetically active photon flux density) could be recorded every 30 min for green algal and cyanobacterial parts of the thallus. Microclimate conditions were also recorded with a datalogger. The study confirmed the already known ability of green algal lichens to reactivate from high humidity alone whilst cyanobacterial species need liquid water, here obtained from rainfall. The photosystems of P. lividofusca were activated on every day and positive ETR (relative electron transport rate) occurred on all but 3 days. Activation level depended on the overnight relative humidity. P. knightii was activated and had positive ETR on only 13 days when rainfall had occurred. Both species were mostly inactive above 12°C but differed at low temperatures. P. knightii showed no activation at very low temperatures, -2 to 0°C, since these only occurred on clear, rain-free nights. PPFD was always very low, mostly below 80 µmol m-2 s-1, and both species were inactive at higher PPFD. The three-dimensional structure of the thallus seemed to contribute to the hydration. The cyanobacterial sectors were more appressed to the trunk and needed substantial rainfall to rewet whereas the green algal lobes were more distant from the trunk and this probably caused more rapid desiccation as well as lower temperatures. It is suggested that the longer active periods for photosynthesis by P. lividofusca are balanced by several factors: first, depressed net photosynthesis at high thallus water contents after rainfall, a feature not shown by P. knightii; second, possible lower maximal net photosynthetic rates; and third, the possibility of greater respiratory rates when thalli have been hydrated by high relative humidity. There is little evidence for high PPFD differently affecting the photosymbiodeme components since sustained, high PPFD did not occur. It has been reported that the photosystems of cyanobacterial species from photosymbiodemes can reactivate at high relative humidity but the results obtained here suggest that it is not ecologically significant.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA