Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593032

RESUMO

Trehalose 6-phosphate (Tre6P) is an essential signal metabolite that regulates the level of sucrose, linking growth and development to the metabolic status. We hypothesized that Tre6P plays a role in mediating the regulation of gene expression by sucrose. To test this, we performed transcriptomic profiling on Arabidopsis (Arabidopsis thaliana) plants that expressed a bacterial TREHALOSE 6-PHOSPHATE SYNTHASE (TPS) under the control of an ethanol-inducible promoter. Induction led to a 4-fold rise in Tre6P levels, a concomitant decrease in sucrose, significant changes (FDR ≤ 0.05) of over 13,000 transcripts, and two-fold or larger changes of over 5000 transcripts. Comparison with nine published responses to sugar availability allowed some of these changes to be linked to the rise in Tre6P, while others were probably due to lower sucrose or other indirect effects. Changes linked to Tre6P included repression of photosynthesis-related gene expression and induction of many growth-related processes including ribosome biogenesis. About 500 starvation-related genes are known to be induced by SUCROSE-NON-FERMENTING-1-RELATED KINASE 1 (SnRK1). They were largely repressed by Tre6P in a manner consistent with SnRK1 inhibition by Tre6P. SnRK1 also represses many genes that are involved in biosynthesis and growth. These responded to Tre6P in a more complex manner, pointing toward Tre6P interacting with other C-signaling pathways. Additionally, elevated Tre6P modified the expression of genes encoding regulatory subunits of the SnRK1 complex and TPS class II and FCS-LIKE ZINC FINGER proteins that are thought to modulate SnRK1 function and genes involved in circadian, TARGET OF RAPAMYCIN-, light, abscisic acid, and other hormone signaling.

2.
Plant J ; 116(1): 38-57, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37329210

RESUMO

Cassava's storage roots represent one of the most important sources of nutritional carbohydrates worldwide. Particularly, smallholder farmers in sub-Saharan Africa depend on this crop plant, where resilient and yield-improved varieties are of vital importance to support steadily increasing populations. Aided by a growing understanding of the plant's metabolism and physiology, targeted improvement concepts already led to visible gains in recent years. To expand our knowledge and to contribute to these successes, we investigated storage roots of eight cassava genotypes with differential dry matter content from three successive field trials for their proteomic and metabolic profiles. At large, the metabolic focus in storage roots transitioned from cellular growth processes toward carbohydrate and nitrogen storage with increasing dry matter content. This is reflected in higher abundance of proteins related to nucleotide synthesis, protein turnover, and vacuolar energization in low starch genotypes, while proteins involved in sugar conversion and glycolysis were more prevalent in high dry matter genotypes. This shift in metabolic orientation was underlined by a clear transition from oxidative- to substrate-level phosphorylation in high dry matter genotypes. Our analyses highlight metabolic patterns that are consistently and quantitatively associated with high dry matter accumulation in cassava storage roots, providing fundamental understanding of cassava's metabolism as well as a data resource for targeted genetic improvement.


Assuntos
Manihot , Amido , Amido/metabolismo , Manihot/metabolismo , Proteômica , Fosforilação , Verduras/metabolismo , Genótipo , Estresse Oxidativo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo
3.
Planta ; 257(4): 81, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36917306

RESUMO

MAIN CONCLUSION: The pool of carbon- and nitrogen-rich metabolites is quantitatively relevant in non-foliar photosynthetic organs during grain filling, which have a better response to water limitation than flag leaves. The response of durum wheat to contrasting water regimes has been extensively studied at leaf and agronomic level in previous studies, but the water stress effects on source-sink dynamics, particularly non-foliar photosynthetic organs, is more limited. Our study aims to investigate the response of different photosynthetic organs to water stress and to quantify the pool of carbon and nitrogen metabolites available for grain filling. Five durum wheat varieties were grown in field trials in the Spanish region of Castile and León under irrigated and rainfed conditions. Water stress led to a significant decrease in yield, biomass, and carbon and nitrogen assimilation, improved water use efficiency, and modified grain quality traits in the five varieties. The pool of carbon (glucose, glucose-6-phosphate, fructose, sucrose, starch, and malate) and nitrogen (glutamate, amino acids, proteins and chlorophylls) metabolites in leaf blades and sheaths, peduncles, awns, glumes and lemmas were also analysed. The results showed that the metabolism of the blades and peduncles was the most susceptible to water stress, while ear metabolism showed higher stability, particularly at mid-grain filling. Interestingly, the total metabolite content per organ highlighted that a large source of nutrients, which may be directly involved in grain filling, are found outside the blades, with the peduncles being quantitatively the most relevant. We conclude that yield improvements in our Mediterranean agro-ecosystem are highly linked to the success of shoots in producing ears and a higher number of grains, while grain filling is highly dependent on the capacity of non-foliar organs to fix CO2 and N. The ear organs show higher stress resilience than other organs, which deserves our attention in future breeding programmes.


Assuntos
Desidratação , Triticum , Triticum/fisiologia , Desidratação/metabolismo , Ecossistema , Melhoramento Vegetal , Carbono/metabolismo , Folhas de Planta/metabolismo , Grão Comestível/metabolismo , Nitrogênio/metabolismo
4.
Front Plant Sci ; 13: 869680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574116

RESUMO

The integration of high-throughput phenotyping and metabolic approaches is a suitable strategy to study the genotype-by-environment interaction and identify novel traits for crop improvement from canopy to an organ level. Our aims were to study the phenotypic and metabolic traits that are related to grain yield and quality at canopy and organ levels, with a special focus on source-sink coordination under contrasting N supplies. Four modern durum wheat varieties with contrasting grain yield were grown in field conditions under two N fertilization levels in north-eastern Spain. We evaluated canopy vegetation indices taken throughout the growing season, physiological and metabolic traits in different photosynthetic organs (flag leaf blade, sheath, peduncle, awn, glume, and lemma) at anthesis and mid-grain filling stages, and agronomic and grain quality traits at harvest. Low N supply triggered an imbalance of C and N coordination at the whole plant level, leading to a reduction of grain yield and nutrient composition. The activities of key enzymes in C and N metabolism as well as the levels of photoassimilates showed that each organ plays an important role during grain filling, some with a higher photosynthetic capacity, others for nutrient storage for later stages of grain filling, or N assimilation and recycling. Interestingly, the enzyme activities and sucrose content of the ear organs were positively associated with grain yield and quality, suggesting, together with the regression models using isotope signatures, the potential contribution of these organs during grain filling. This study highlights the use of holistic approaches to the identification of novel targets to improve grain yield and quality in C3 cereals and the key role of non-foliar organs at late-growth stages.

5.
Plant J ; 104(3): 768-780, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32799402

RESUMO

The vegetative phase change marks the beginning of the adult phase in the life cycle of plants and is associated with a gradual decline in the microRNA miR156, in response to sucrose status. Trehalose 6-phosphate (T6P) is a sugar molecule with signaling function reporting the current sucrose state. To elucidate the role of T6P signaling in vegetative phase change, molecular, genetic, and metabolic analyses were performed using Arabidopsis thaliana loss-of-function lines in TREHALOSE PHOSPHATE SYNTHASE1 (TPS1), a gene coding for an enzyme that catalyzes the production of T6P. These lines show a significant delay in vegetative phase change, under both short and long day conditions. Induced expression of TPS1 complements this delay in the TPS1 knockout mutant (tps1-2 GVG::TPS1). Further analyses indicate that the T6P pathway promotes vegetative phase transition by suppressing miR156 expression and thereby modulating the levels of its target transcripts, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes. TPS1 knockdown plants, with a delayed vegetative phase change phenotype, accumulate significantly more sucrose than wild-type plants as a result of a feedback mechanism. In summary, we conclude that the T6P pathway forms an integral part of an endogenous mechanism that influences phase transitions dependent on the metabolic state.


Assuntos
Arabidopsis/fisiologia , Glucosiltransferases/metabolismo , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Proteínas de Arabidopsis/genética , Epistasia Genética , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Redes e Vias Metabólicas , MicroRNAs/genética , Mutação , Proteínas Nucleares/genética , Plantas Geneticamente Modificadas , Proteínas Repressoras/genética , Sacarose/metabolismo , Trealose/metabolismo
6.
Plant J ; 102(6): 1202-1219, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31950549

RESUMO

Cassava is an important staple crop in sub-Saharan Africa, due to its high productivity even on nutrient poor soils. The metabolic characteristics underlying this high productivity are poorly understood including the mode of photosynthesis, reasons for the high rate of photosynthesis, the extent of source/sink limitation, the impact of environment, and the extent of variation between cultivars. Six commercial African cassava cultivars were grown in a greenhouse in Erlangen, Germany, and in the field in Ibadan, Nigeria. Source leaves, sink leaves, stems and storage roots were harvested during storage root bulking and analyzed for sugars, organic acids, amino acids, phosphorylated intermediates, minerals, starch, protein, activities of enzymes in central metabolism and yield traits. High ratios of RuBisCO:phosphoenolpyruvate carboxylase activity support a C3 mode of photosynthesis. The high rate of photosynthesis is likely to be attributed to high activities of enzymes in the Calvin-Benson cycle and pathways for sucrose and starch synthesis. Nevertheless, source limitation is indicated because root yield traits correlated with metabolic traits in leaves rather than in the stem or storage roots. This situation was especially so in greenhouse-grown plants, where irradiance will have been low. In the field, plants produced more storage roots. This was associated with higher AGPase activity and lower sucrose in the roots, indicating that feedforward loops enhanced sink capacity in the high light and low nitrogen environment in the field. Overall, these results indicated that carbon assimilation rate, the K battery, root starch synthesis, trehalose, and chlorogenic acid accumulation are potential target traits for genetic improvement.


Assuntos
Manihot/metabolismo , Raízes de Plantas/metabolismo , Metabolismo dos Carboidratos , Produção Agrícola , Manihot/crescimento & desenvolvimento , Redes e Vias Metabólicas , Fotossíntese , Folhas de Planta/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Caules de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
7.
Curr Protoc Plant Biol ; 4(4): e20102, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31834991

RESUMO

Cassava plays an important role as a staple food for more than 800 million people in the world due to its ability to maintain relatively high productivity even in nutrient-depleted soils. Even though cassava has been the focus of several breeding programs and has become a strong focus of research in the last few years, relatively little is currently known about its metabolism and metabolic composition in different tissues. In this article, the absolute content of sugars, organic acids, amino acids, phosphorylated intermediates, minerals, starch, carotenoids, chlorophylls, tocopherols, and total protein as well as starch quality is described based on multiple analytical techniques, with protocols specifically adjusted for material from different cassava tissues. Moreover, quantification of secondary metabolites relative to internal standards is presented using both non-targeted and targeted metabolomics approaches. The protocols have also been adjusted to apply to freeze-dried material in order to allow processing of field harvest samples that typically will require long-distance transport. © 2019 The Authors. Basic Protocol 1: Metabolic profiling by gas chromatography-mass spectrometry (GC-MS) Support Protocol 1: Preparation of freeze-dried cassava material Support Protocol 2: Preparation of standard compound mixtures for absolute quantification of metabolites by GC-MS Support Protocol 3: Preparation of retention-time standard mixture Basic Protocol 2: Determination of organic acids and phosphorylated intermediates by ion chromatography-mass spectrometry (IC-MS) Support Protocol 4: Preparation of standards and recovery experimental procedure Basic Protocol 3: Determination of soluble sugars, starch, and free amino acids Alternate Protocol: Determination of soluble sugars and starch Basic Protocol 4: Determination of anions Basic Protocol 5: Determination of elements Basic Protocol 6: Determination of total protein Basic Protocol 7: Determination of non-targeted and targeted secondary metabolites Basic Protocol 8: Determination of carotenoids, chlorophylls, and tocopherol Basic Protocol 9: Determination of starch quality.


Assuntos
Manihot , Aminoácidos , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Amido
8.
Planta ; 250(1): 41-57, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30904943

RESUMO

MAIN CONCLUSION: The plasticity of plant growth response to differing nitrate availability renders the identification of biomarkers difficult, but allows access to genetic factors as tools to modulate root systems to a wide range of soil conditions. Nitrogen availability is a major determinant of crop yield. While the application of fertiliser substantially increases the yield on poor soils, it also causes nitrate pollution of water resources and high costs for farmers. Increasing nitrogen use efficiency in crop plants is a necessary step to implement low-input agricultural systems. We exploited the genetic diversity present in the worldwide Arabidopsis thaliana population to study adaptive growth patterns and changes in gene expression associated with chronic low nitrate stress, to identify biomarkers associated with good plant performance under low nitrate availability. Arabidopsis accessions were grown on agar plates with limited and sufficient supply of nitrate to measure root system architecture as well as shoot and root fresh weight. Differential gene expression was determined using Affymetrix ATH1 arrays. We show that the response to differing nitrate availability is highly variable in Arabidopsis accessions. Analyses of vegetative shoot growth and root system architecture identified accession-specific reaction modes to cope with limited nitrate availability. Transcription and epigenetic factors were identified as important players in the adaption to limited nitrogen in a global gene expression analysis. Five nitrate-responsive genes emerged as possible biomarkers for NUE in Arabidopsis. The plasticity of plant growth in response to differing nitrate availability in the substrate renders the identification of morphological and molecular features as biomarkers difficult, but at the same time allows access to a multitude of genetic factors which can be used as tools to modulate and adjust root systems to a wide range of soil conditions.


Assuntos
Arabidopsis/genética , Variação Genética , Nitratos/metabolismo , Nitrogênio/metabolismo , Adaptação Fisiológica , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Brotos de Planta/genética , Brotos de Planta/fisiologia , Solo/química
9.
New Phytol ; 223(2): 814-827, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30903620

RESUMO

Optimal timing of flowering, a major determinant for crop productivity, is controlled by environmental and endogenous cues. Nutrients are known to modify flowering time; however, our understanding of how nutrients interact with the known pathways, especially at the shoot apical meristem (SAM), is still incomplete. Given the negative side-effects of nitrogen fertilization, it is essential to understand its mode of action for sustainable crop production. We investigated how a moderate restriction by nitrate is integrated into the flowering network at the SAM, to which plants can adapt without stress symptoms. This condition delays flowering by decreasing expression of SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) at the SAM. Measurements of nitrate and the responses of nitrate-responsive genes suggest that nitrate functions as a signal at the SAM. The transcription factors NIN-LIKE PROTEIN 7 (NLP7) and NLP6, which act as master regulators of nitrate signaling by binding to nitrate-responsive elements (NREs), are expressed at the SAM and flowering is delayed in single and double mutants. Two upstream regulators of SOC1 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) and SPL5) contain functional NREs in their promoters. Our results point at a tissue-specific, nitrate-mediated flowering time control in Arabidopsis thaliana.


Assuntos
Arabidopsis/metabolismo , Flores/fisiologia , Meristema/metabolismo , Nitratos/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Regulação da Expressão Gênica no Desenvolvimento , Fotoperíodo , Transdução de Sinais , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Trealose/metabolismo
10.
J Exp Bot ; 70(6): 1843-1858, 2019 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-30773587

RESUMO

Low atmospheric CO2 in recent geological time led to the evolution of carbon-concentrating mechanisms (CCMs) such as C4 photosynthesis in >65 terrestrial plant lineages. We know little about the impact of low CO2 on the Calvin-Benson cycle (CBC) in C3 species that did not evolve CCMs, representing >90% of terrestrial plant species. Metabolite profiling provides a top-down strategy to investigate the operational balance in a pathway. We profiled CBC intermediates in a panel of C4 (Zea mays, Setaria viridis, Flaveria bidentis, and F. trinervia) and C3 species (Oryza sativa, Triticium aestivum, Arabidopsis thaliana, Nicotiana tabacum, and Manihot esculenta). Principal component analysis revealed differences between C4 and C3 species that were driven by many metabolites, including lower ribulose 1,5-bisphosphate in C4 species. Strikingly, there was also considerable variation between C3 species. This was partly due to different chlorophyll and protein contents, but mainly to differences in relative levels of metabolites. Correlation analysis indicated that one contributory factor was the balance between fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase, phosphoribulokinase, and Rubisco. Our results point to the CBC having experienced different evolutionary trajectories in C3 species since the ancestors of modern plant lineages diverged. They underline the need to understand CBC operation in a wide range of species.


Assuntos
Ciclo do Carbono , Magnoliopsida/metabolismo , Fotossíntese , Especificidade da Espécie
11.
Plant Cell ; 29(10): 2349-2373, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28954812

RESUMO

Central metabolism is a coordinated network that is regulated at multiple levels by resource availability and by environmental and developmental cues. Its genetic architecture has been investigated by mapping metabolite quantitative trait loci (QTL). A more direct approach is to identify enzyme activity QTL, which distinguishes between cis-QTL in structural genes encoding enzymes and regulatory trans-QTL. Using genome-wide association studies, we mapped QTL for 24 enzyme activities, nine metabolites, three structural components, and biomass in Arabidopsis thaliana We detected strong cis-QTL for five enzyme activities. A cis-QTL for UDP-glucose pyrophosphorylase activity in the UGP1 promoter is maintained through balancing selection. Variation in acid invertase activity reflects multiple evolutionary events in the promoter and coding region of VAC-INVcis-QTL were also detected for ADP-glucose pyrophosphorylase, fumarase, and phosphoglucose isomerase activity. We detected many trans-QTL, including transcription factors, E3 ligases, protein targeting components, and protein kinases, and validated some by knockout analysis. trans-QTL are more frequent but tend to have smaller individual effects than cis-QTL. We detected many colocalized QTL, including a multitrait QTL on chromosome 4 that affects six enzyme activities, three metabolites, protein, and biomass. These traits are coordinately modified by different ACCELERATED CELL DEATH6 alleles, revealing a trade-off between metabolism and defense against biotic stress.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Locos de Características Quantitativas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
Theor Appl Genet ; 130(9): 1927-1939, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28647896

RESUMO

KEY MESSAGE: Complementing genomic data with other "omics" predictors can increase the probability of success for predicting the best hybrid combinations using complex agronomic traits. Accurate prediction of traits with complex genetic architecture is crucial for selecting superior candidates in animal and plant breeding and for guiding decisions in personalized medicine. Whole-genome prediction has revolutionized these areas but has inherent limitations in incorporating intricate epistatic interactions. Downstream "omics" data are expected to integrate interactions within and between different biological strata and provide the opportunity to improve trait prediction. Yet, predicting traits from parents to progeny has not been addressed by a combination of "omics" data. Here, we evaluate several "omics" predictors-genomic, transcriptomic and metabolic data-measured on parent lines at early developmental stages and demonstrate that the integration of transcriptomic with genomic data leads to higher success rates in the correct prediction of untested hybrid combinations in maize. Despite the high predictive ability of genomic data, transcriptomic data alone outperformed them and other predictors for the most complex heterotic trait, dry matter yield. An eQTL analysis revealed that transcriptomic data integrate genomic information from both, adjacent and distant sites relative to the expressed genes. Together, these findings suggest that downstream predictors capture physiological epistasis that is transmitted from parents to their hybrid offspring. We conclude that the use of downstream "omics" data in prediction can exploit important information beyond structural genomics for leveraging the efficiency of hybrid breeding.


Assuntos
Zea mays/genética , Mapeamento Cromossômico , Genômica , Vigor Híbrido , Metabolômica , Modelos Genéticos , Fenótipo , Melhoramento Vegetal , Locos de Características Quantitativas , Característica Quantitativa Herdável , Transcriptoma
13.
J Biol Chem ; 291(34): 17848-60, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27339897

RESUMO

Chloroplasts and mitochondria are unique endosymbiotic cellular organelles surrounded by two membranes. Essential metabolic networking between these compartments and their hosting cells requires the exchange of a large number of biochemical pathway intermediates in a directed and coordinated fashion across their inner and outer envelope membranes. Here, we describe the identification and functional characterization of a highly specific, regulated solute channel in the outer envelope of chloroplasts, named OEP40. Loss of OEP40 function in Arabidopsis thaliana results in early flowering under cold temperature. The reconstituted recombinant OEP40 protein forms a high conductance ß-barrel ion channel with subconductant states in planar lipid bilayers. The OEP40 channel is slightly cation-selective PK+/PCl- ≈ 4:1 and rectifying (i⃗/i⃖ ≅ 2) with a slope conductance of Gmax ≅ 690 picosiemens. The OEP40 channel has a restriction zone diameter of ≅1.4 nm and is permeable for glucose, glucose 1-phosphate and glucose 6-phosphate, but not for maltose. Moreover, channel properties are regulated by trehalose 6-phosphate, which cannot permeate. Altogether, our results indicate that OEP40 is a "glucose-gate" in the outer envelope membrane of chloroplasts, facilitating selective metabolite exchange between chloroplasts and the surrounding cell.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/química , Proteínas de Cloroplastos/química , Cloroplastos/química , Membranas Intracelulares/química , Proteínas de Membrana/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Glucose/química , Glucose/genética , Glucose/metabolismo , Membranas Intracelulares/metabolismo , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
14.
Plant Cell Environ ; 39(4): 745-67, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26351840

RESUMO

The impact of transient carbon depletion on reproductive growth in Arabidopsis was investigated by transferring long-photoperiod-grown plants to continuous darkness and returning them to a light-dark cycle. After 2 days of darkness, carbon reserves were depleted in reproductive sinks, and RNA in situ hybridization of marker transcripts showed that carbon starvation responses had been initiated in the meristem, anthers and ovules. Dark treatments of 2 or more days resulted in a bare-segment phenotype on the floral stem, with 23-27 aborted siliques. These resulted from impaired growth of immature siliques and abortion of mature and immature flowers. Depolarization of PIN1 protein and increased DII-VENUS expression pointed to rapid collapse of auxin gradients in the meristem and inhibition of primordia initiation. After transfer back to a light-dark cycle, flowers appeared and formed viable siliques and seeds. A similar phenotype was seen after transfer to sub-compensation point irradiance or CO2 . It also appeared in a milder form after a moderate decrease in irradiance and developed spontaneously in short photoperiods. We conclude that Arabidopsis inhibits primordia initiation and aborts flowers and very young siliques in C-limited conditions. This curtails demand, safeguarding meristem function and allowing renewal of reproductive growth when carbon becomes available again.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Carboidratos/deficiência , Flores/fisiologia , Meristema/fisiologia , Sementes/fisiologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/efeitos da radiação , Carbono/farmacologia , Dióxido de Carbono/farmacologia , Flores/efeitos dos fármacos , Flores/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Ácidos Indolacéticos/metabolismo , Luz , Lipídeos/análise , Proteínas de Membrana Transportadoras/metabolismo , Meristema/efeitos dos fármacos , Meristema/efeitos da radiação , Metaboloma/efeitos dos fármacos , Metaboloma/efeitos da radiação , Fenótipo , Fotoperíodo , Pólen/efeitos dos fármacos , Pólen/fisiologia , Pólen/efeitos da radiação , Reprodução/efeitos dos fármacos , Reprodução/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/efeitos da radiação , Amido/metabolismo , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação , Sacarose/metabolismo , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/efeitos da radiação , Triglicerídeos/metabolismo
15.
Front Plant Sci ; 6: 517, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26217367

RESUMO

Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi.

16.
Plant Cell Environ ; 37(6): 1276-98, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24895754

RESUMO

Proteaceae species in south-western Australia occur on phosphorus- (P) impoverished soils. Their leaves contain very low P levels, but have relatively high rates of photosynthesis. We measured ribosomal RNA (rRNA) abundance, soluble protein, activities of several enzymes and glucose 6-phosphate (Glc6P) levels in expanding and mature leaves of six Proteaceae species in their natural habitat. The results were compared with those for Arabidopsis thaliana. Compared with A. thaliana, immature leaves of Proteaceae species contained very low levels of rRNA, especially plastidic rRNA. Proteaceae species showed slow development of the photosynthetic apparatus ('delayed greening'), with young leaves having very low levels of chlorophyll and Calvin-Benson cycle enzymes. In mature leaves, soluble protein and Calvin-Benson cycle enzyme activities were low, but Glc6P levels were similar to those in A. thaliana. We propose that low ribosome abundance contributes to the high P efficiency of these Proteaceae species in three ways: (1) less P is invested in ribosomes; (2) the rate of growth and, hence, demand for P is low; and (3) the especially low plastidic ribosome abundance in young leaves delays formation of the photosynthetic machinery, spreading investment of P in rRNA. Although Calvin-Benson cycle enzyme activities are low, Glc6P levels are maintained, allowing their effective use.


Assuntos
Fósforo/metabolismo , Proteaceae/fisiologia , RNA de Plantas/metabolismo , RNA Ribossômico/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Clorofila/metabolismo , Glucose-6-Fosfato/metabolismo , Fotossíntese , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Proteaceae/genética , Proteaceae/metabolismo , Proteínas Ribossômicas/metabolismo , Amido/metabolismo
17.
J Exp Bot ; 64(14): 4301-12, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23997203

RESUMO

In plants, sugars such as glucose act as signalling molecules that promote changes in gene expression programmes that impact on growth and development. Recent evidence has revealed the potential importance of controlling mRNA decay in some aspects of glucose-mediated regulatory responses suggesting a role of microRNAs (miRNAs) in these responses. In order to get a better understanding of glucose-mediated development modulation involving miRNA-related regulatory pathways, early seedling development of mutants impaired in miRNA biogenesis (hyl1-2 and dcl1-11) and miRNA activity (ago1-25) was evaluated. All mutants exhibited a glucose hyposensitive phenotype from germination up to seedling establishment, indicating that miRNA regulatory pathways are involved in the glucose-mediated delay of early seedling development. The expression profile of 200 miRNA primary transcripts (pri-miRs) was evaluated by large-scale quantitative real-time PCR profiling, which revealed that 38 pri-miRs were regulated by glucose. For several of them, the corresponding mature miRNAs are known to participate directly or indirectly in plant development, and their accumulation was shown to be co-regulated with the pri-miR by glucose. Furthermore, the expression of several miRNA target genes was found to be deregulated in response to glucose in the miRNA machinery mutants ago1-25, dcl1-11, and hyl1-2. Also, in these mutants, glucose promoted misexpression of genes for the three abscisic acid signalling elements ABI3, ABI4, and ABI5. Thus, miRNA regulatory pathways play a role in the adjustments of growth and development triggered by glucose signalling.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Redes Reguladoras de Genes/genética , Glucose/farmacologia , MicroRNAs/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/genética , Arabidopsis/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , MicroRNAs/genética , Mutação/genética , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/efeitos dos fármacos
18.
Science ; 339(6120): 704-7, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23393265

RESUMO

The timing of the induction of flowering determines to a large extent the reproductive success of plants. Plants integrate diverse environmental and endogenous signals to ensure the timely transition from vegetative growth to flowering. Carbohydrates are thought to play a crucial role in the regulation of flowering, and trehalose-6-phosphate (T6P) has been suggested to function as a proxy for carbohydrate status in plants. The loss of TREHALOSE-6-PHOSPHATE SYNTHASE 1 (TPS1) causes Arabidopsis thaliana to flower extremely late, even under otherwise inductive environmental conditions. This suggests that TPS1 is required for the timely initiation of flowering. We show that the T6P pathway affects flowering both in the leaves and at the shoot meristem, and integrate TPS1 into the existing genetic framework of flowering-time control.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Glucosiltransferases/metabolismo , Transdução de Sinais , Fosfatos Açúcares/metabolismo , Trealose/análogos & derivados , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Glucosiltransferases/genética , Meristema/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Fotoperíodo , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , Trealose/metabolismo
19.
J Plant Physiol ; 169(9): 899-907, 2012 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-22459323

RESUMO

NAD(P)H-glutamate dehydrogenase (GDH, EC 1.4.1.3) contributes to the control of glutamate homeostasis in all living organisms. In bacteria and animals, GDH is a homohexamer allosterically regulated, whereas in plants NADH-GDH (EC 1.4.1.2) is also found as heterohexamer of α- and ß-subunits, but its regulation remains undefined. In tomato (Solanum lycopersicum), GDH activity increases during the fruit ripening along with the content of free glutamate, the most abundant amino acid of ripe fruit involved in conferring the genuine tomato flavour. In this work, novel Slgdh-NAD genes were identified in the recently deciphered tomato genome: three encoding the α-subunit (Slgdh-NAD;A1-3) and one additional gene encoding the ß-subunit of GDH (Slgdh-NAD;B1) isolated from a genomic library. These genes are located in different chromosomes. Slgdh-NAD;A1-3 show conserved structures, whereas Slgdh-NAD;B1 includes a novel 5'-untranslated exon. Slgdh-NAD;A1-3 transcripts were detected in all tomato tissues examined, showing the highest levels in mature green fruits, contrasting with Slgdh-NAD;B1 transcripts which were detected mainly in roots or in mature fruits when treated with glutamate, NaCl or salicylic acid. Analyses of GDH activity and protein distribution in different tissues of the Micro-Tom cultivar showed that only the active homohexamer of GDH ß-subunits was detected in roots while heterohexamers of GDH α- and ß-subunits were found in fruits. These results indicate that GDH ß-subunit could modulate the heteromeric isoforms of GDH in response to the environment and physiology of the tomato fruit. This information is relevant to manipulate glutamate contents in tomato fruits genetically.


Assuntos
Frutas/enzimologia , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/genética , Sequência de Aminoácidos , China , Regulação Enzimológica da Expressão Gênica , Genes de Plantas , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transcrição Gênica/efeitos dos fármacos
20.
Plant Sci ; 182: 101-11, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22118621

RESUMO

A metabolic depletion syndrome was discovered at early vegetative stages in roots of salt sensitive rice cultivars after prolonged exposure to 100mM NaCl. Metabolite profiling analyses demonstrate that this syndrome is part of the terminal stages of the rice salt response. The phenotype encompasses depletion of at least 30 primary metabolites including sucrose, glucose, fructose, glucose-6-P, fructose-6P, organic- and amino-acids. Based on these observations we reason that sucrose allocation to the root may modify the rice response to high salt. This hypothesis was tested using antisense lines of the salt responsive OsSUT1 gene in the salt sensitive Taipei 309 cultivar. Contrary to our expectations of a plant system impaired in one component of sucrose transport, we find improved gas exchange and photosynthetic performance as well as maintenance of sucrose levels in the root under high salinity. Two independent OsSUT1 lines with an antisense inhibition similar to the naturally occurring salt induced reduction of OsSUT1 gene expression showed these phenomena but not a more extreme antisense inhibition line. We investigated the metabolic depletion syndrome by metabolomic and physiological approaches and discuss our results with regard to the potential role of sucrose transporters and sucrose transport for rice salt acclimation.


Assuntos
Proteínas de Transporte de Monossacarídeos/biossíntese , Proteínas de Transporte de Monossacarídeos/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Adaptação Fisiológica , Transporte Biológico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Metabolômica , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Salinidade , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...