Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 14(1): 24-31, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36562987

RESUMO

An open-loop control scheme of molecular fragmentation based on transient molecular alignment combined with single-photon ionization induced by a short-wavelength free electron laser (FEL) is demonstrated for the acetylene cation. Photoelectron spectra are recorded, complementing the ion yield measurements, to demonstrate that such control is the consequence of changes in the electronic response with molecular orientation relative to the ionizing field. We show that stable C2H2+ cations are mainly produced when the molecules are parallel or nearly parallel to the FEL polarization, while the hydrogen fragmentation channel (C2H2+ → C2H+ + H) predominates when the molecule is perpendicular to that direction, thus allowing one to distinguish between the two photochemical processes. The experimental findings are supported by state-of-the art theoretical calculations.

2.
Nat Commun ; 9(1): 3162, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30089780

RESUMO

Time-resolved photoelectron spectroscopy (TRPES) is a useful approach to elucidate the coupled electronic-nuclear quantum dynamics underlying chemical processes, but has remained limited by the use of low photon energies. Here, we demonstrate the general advantages of XUV-TRPES through an application to NO2, one of the simplest species displaying the complexity of a non-adiabatic photochemical process. The high photon energy enables ionization from the entire geometrical configuration space, giving access to the true dynamics of the system. Specifically, the technique reveals dynamics through a conical intersection, large-amplitude motion and photodissociation in the electronic ground state. XUV-TRPES simultaneously projects the excited-state wave packet onto many final states, offering a multi-dimensional view of the coupled electronic and nuclear dynamics. Our interpretations are supported by ab initio wavepacket calculations on new global potential-energy surfaces. The presented results contribute to establish XUV-TRPES as a powerful technique providing a complete picture of ultrafast chemical dynamics from photoexcitation to the final products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...